login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055800
Triangle T read by rows: T(i,0)=1 for i >= 0; T(i,i)=0 for i >= 1; T(i,j) = Sum_{k=1..floor(i/2)} T(i-2k,j-2k+1) for 1 <= j <= i-1, where T(m,n) := 0 if m < 0 or n < 0.
1
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 1, 1, 1, 2, 3, 4, 3, 1, 0, 1, 1, 1, 2, 3, 4, 3, 1, 0, 0, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 0, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 0, 0, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 0
OFFSET
0,25
COMMENTS
T(i+j,j) is the number of strings (s(1),...,s(m)) of nonnegative integers s(k) such that m <= i+1, s(m)=j and s(k)-s(k-1) is an odd positive integer for k=2,3,...,m.
T(i+j,j) is the number of compositions of j consisting of at most i parts, all positive odd integers.
LINKS
C. Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 2A.
FORMULA
G.f. for k-th diagonal: (1-x^2-x*(x/(1-x^2))^k)/(1-x-x^2). - Vladeta Jovovic, Mar 10 2005
EXAMPLE
Triangle begins:
1;
1,0;
1,1,0;
1,1,0,0;
1,1,1,1,0;
...
T(10,5) counts the strings 012345, 0125, 0145, 0345, 05.
T(10,5) counts the compositions 11111, 113, 131, 311, 5.
MAPLE
T:= proc(n, k) option remember;
if n<0 or k<0 then 0;
elif k=0 then 1;
elif k=n then 0;
else add(T(n-2*j, k-2*j+1), j=1..floor(n/2)) ;
end if; end proc:
seq(seq(T(n, k), k=0..n), n=0..15); # G. C. Greubel, Jan 24 2020
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0 || k<0, 0, If[k==0, 1, If[k==n, 0, Sum[T[n-2*j, k- 2*j+1], {j, Floor[n/2]}]]]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 24 2020 *)
PROG
(PARI) T(n, k) = if(n<0 || k<0, 0, if(k==0, 1, if(k==n, 0, sum(j=1, n\2, T(n-2*j, k-2*j+1) ))));
for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 23 2020
(Magma)
function T(n, k)
if n lt 0 or k lt 0 then return 0;
elif k eq 0 then return 1;
elif k eq n then return 0;
else return (&+[T(n-2*j, k-2*j+1): j in [1..Floor(n/2)]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2020
(Sage)
@CachedFunction
def T(n, k):
if (n<0 or k<0): return 0
elif (k==0): return 1
elif (k==n): return 0
else: return sum(T(n-2*j, k-2*j+1) for j in (1..floor(n/2)))
[[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jan 23 2020
(GAP)
T:= function(n, k)
if n<0 or k<0 then return 0;
elif k=0 then return 1;
elif k=n then return 0;
else return Sum([1..Int(n/2)], j-> T(n-2*j, k-2*j+1));
fi; end;
Flat(List([0..15], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jan 23 2020
CROSSREFS
Row sums are powers of 2: A016116.
T(2n, n)=A000045(n) for n >= 1 (Fibonacci numbers).
Cf. A027926.
Sequence in context: A189996 A016390 A327688 * A060572 A163543 A358095
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 28 2000
EXTENSIONS
a(88)-a(90) from Michel Marcus, Jan 21 2019
STATUS
approved