login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163543
The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.
4
2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1
OFFSET
1,1
COMMENTS
a(16*n) = a(256*n) for all n.
LINKS
FORMULA
a(n) = A163241((A163541(n+1)-A163541(n)) modulo 4).
MATHEMATICA
HC = {
L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16] ] := Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];
Part[a[#] & /@ Range[4^4] /. {L[_] -> 2, R[_] -> 1, F[_] -> 0}, 2 ;; -1] (* Bradley Klee, Aug 06 2015 *)
PROG
(Scheme:) (define (A163543 n) (A163241 (modulo (- (A163541 (1+ n)) (A163541 n)) 4)))
CROSSREFS
a(n) = A014681(A163542(n)). See also A163541.
Sequence in context: A327688 A055800 A060572 * A358095 A180009 A341907
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 01 2009
STATUS
approved