login
A163543
The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.
4
2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1
OFFSET
1,1
COMMENTS
a(16*n) = a(256*n) for all n.
LINKS
FORMULA
a(n) = A163241((A163541(n+1)-A163541(n)) modulo 4).
MATHEMATICA
HC = {
L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16] ] := Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];
Part[a[#] & /@ Range[4^4] /. {L[_] -> 2, R[_] -> 1, F[_] -> 0}, 2 ;; -1] (* Bradley Klee, Aug 06 2015 *)
PROG
(Scheme:) (define (A163543 n) (A163241 (modulo (- (A163541 (1+ n)) (A163541 n)) 4)))
CROSSREFS
a(n) = A014681(A163542(n)). See also A163541.
Sequence in context: A327688 A055800 A060572 * A358095 A180009 A341907
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 01 2009
STATUS
approved