login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163543 The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n. 4
2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(16*n) = a(256*n) for all n.

LINKS

A. Karttunen, Table of n, a(n) for n = 1..4096

FORMULA

a(n) = A163241((A163541(n+1)-A163541(n)) modulo 4).

MATHEMATICA

HC = {

L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},

R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},

R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},

L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},

F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},

F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};

a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16] ] := Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];

Part[a[#] & /@ Range[4^4] /. {L[_] -> 2, R[_] -> 1, F[_] -> 0}, 2 ;; -1] (* Bradley Klee, Aug 06 2015 *)

PROG

(Scheme:) (define (A163543 n) (A163241 (modulo (- (A163541 (1+ n)) (A163541 n)) 4)))

CROSSREFS

a(n) = A014681(A163542(n)). See also A163541.

Sequence in context: A327688 A055800 A060572 * A180009 A341907 A180010

Adjacent sequences:  A163540 A163541 A163542 * A163544 A163545 A163546

KEYWORD

nonn

AUTHOR

Antti Karttunen, Aug 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 16:09 EDT 2021. Contains 345063 sequences. (Running on oeis4.)