The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163543 The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n. 4
 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(16*n) = a(256*n) for all n. LINKS A. Karttunen, Table of n, a(n) for n = 1..4096 FORMULA a(n) = A163241((A163541(n+1)-A163541(n)) modulo 4). MATHEMATICA HC = { L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]}, R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]}, R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]}, L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]}, F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]}, F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}}; a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16] ] := Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]]; Part[a[#] & /@ Range[4^4] /. {L[_] -> 2, R[_] -> 1, F[_] -> 0}, 2 ;; -1] (* Bradley Klee, Aug 06 2015 *) PROG (Scheme:) (define (A163543 n) (A163241 (modulo (- (A163541 (1+ n)) (A163541 n)) 4))) CROSSREFS a(n) = A014681(A163542(n)). See also A163541. Sequence in context: A327688 A055800 A060572 * A180009 A341907 A180010 Adjacent sequences:  A163540 A163541 A163542 * A163544 A163545 A163546 KEYWORD nonn AUTHOR Antti Karttunen, Aug 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 16:09 EDT 2021. Contains 345063 sequences. (Running on oeis4.)