login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163359
Hilbert curve in N x N grid, starting downwards from the top-left corner, listed by descending antidiagonals.
22
0, 3, 1, 4, 2, 14, 5, 7, 13, 15, 58, 6, 8, 12, 16, 59, 57, 9, 11, 17, 19, 60, 56, 54, 10, 30, 18, 20, 63, 61, 55, 53, 31, 29, 23, 21, 64, 62, 50, 52, 32, 28, 24, 22, 234, 65, 67, 49, 51, 33, 35, 27, 25, 233, 235, 78, 66, 68, 48, 46, 34, 36, 26, 230, 232, 236, 79, 77, 71
OFFSET
0,2
LINKS
David Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Mathematische Annalen, volume 38, number 3, 1891, pages 459-460. Also EUDML (link to GDZ).
Eric Weisstein's World of Mathematics, Hilbert curve
EXAMPLE
The top left 8x8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
+0 +3 +4 +5 58 59 60 63
+1 +2 +7 +6 57 56 61 62
14 13 +8 +9 54 55 50 49
15 12 11 10 53 52 51 48
16 17 30 31 32 33 46 47
19 18 29 28 35 34 45 44
20 23 24 27 36 39 40 43
21 22 25 26 37 38 41 42
MATHEMATICA
b[{n_, k_}, {m_}] := (A[n, k] = m-1);
MapIndexed[b, List @@ HilbertCurve[4][[1]]];
Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
CROSSREFS
Transpose: A163357, a(n) = A163357(A061579(n)). Inverse: A163360. One-based version: A163363. Row sums: A163365. Row 0: A163483. Column 0: A163482. Central diagonal: A062880.
See also A163334 and A163336 for the Peano curve.
Sequence in context: A379065 A275896 A340754 * A065256 A016573 A191818
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jul 29 2009
STATUS
approved