login
A163357
Hilbert curve in N X N grid, starting rightwards from the top-left corner, listed by descending antidiagonals.
39
0, 1, 3, 14, 2, 4, 15, 13, 7, 5, 16, 12, 8, 6, 58, 19, 17, 11, 9, 57, 59, 20, 18, 30, 10, 54, 56, 60, 21, 23, 29, 31, 53, 55, 61, 63, 234, 22, 24, 28, 32, 52, 50, 62, 64, 235, 233, 25, 27, 35, 33, 51, 49, 67, 65, 236, 232, 230, 26, 36, 34, 46, 48, 68, 66, 78, 239, 237, 231
OFFSET
0,3
LINKS
Jörg Arndt, Plane-filling curves on all uniform grids, arXiv:1607.02433v1 [math.CO], July 11, 2016.
Herman Haverkort, The Sound of Space-Filling Curves, Proc. Bridges 2017, pp. 399-402.
Eric Weisstein's World of Mathematics, Hilbert curve
FORMULA
a(n) = A163355(A054238(n)).
EXAMPLE
The top left 8 X 8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
0 1 14 15 16 19 20 21
3 2 13 12 17 18 23 22
4 7 8 11 30 29 24 25
5 6 9 10 31 28 27 26
58 57 54 53 32 35 36 37
59 56 55 52 33 34 39 38
60 61 50 51 46 45 40 41
63 62 49 48 47 44 43 42
MATHEMATICA
b[{n_, k_}, {m_}] := (A[k, n] = m-1);
MapIndexed[b, List @@ HilbertCurve[4][[1]]];
Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
CROSSREFS
Transpose: A163359. Inverse: A163358. One-based version: A163361. Row sums: A163365. Row 0: A163482. Column 0: A163483. Central diagonal: A062880. See also A163334 & A163336 for the Peano curve.
Sequence in context: A157323 A016549 A147584 * A179087 A217013 A058991
KEYWORD
nonn,tabl,look
AUTHOR
Antti Karttunen, Jul 29 2009
EXTENSIONS
Links to further derived sequences added by Antti Karttunen, Sep 21 2009
STATUS
approved