login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163540
The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163357 at the step n.
9
0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 2, 2, 3, 0, 3, 3, 2, 1, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0
OFFSET
1,3
COMMENTS
Taking every sixteenth term gives the same sequence: (and similarly for all higher powers of 16 as well): a(n) = a(16*n).
LINKS
FORMULA
a(n) = A010873(A163538(n)+A163539(n)+abs(A163539(n))+3).
MATHEMATICA
HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] :=
Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];
Part[FoldList[Mod[Plus[#1, #2], 4] &, 0,
a[#] & /@ Range[4^4] /. {F[n_] :> 0, L[n_] :> 1, R[n_] :> -1}],
2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
PROG
(Scheme:) (define (A163540 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163539 n))) 4))
CROSSREFS
a(n) = A163540(A008598(n)) = A004442(A163541(n)). See also A163542.
Sequence in context: A065715 A180984 A051628 * A127967 A147602 A114206
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 01 2009
STATUS
approved