login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004442
Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.
55
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30, 33, 32, 35, 34, 37, 36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52, 55, 54, 57, 56, 59, 58, 61, 60, 63, 62, 65, 64, 67, 66, 69
OFFSET
0,3
COMMENTS
A self-inverse permutation of the natural numbers.
Nonnegative numbers rearranged with least disturbance to maintain a(n) not equal to n. - Amarnath Murthy, Sep 13 2002
Essentially lodumo_2 of A059841. - Philippe Deléham, Apr 26 2009
a(n) = A180176(n) for n >= 20. - Reinhard Zumkeller, Aug 15 2010
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.
FORMULA
a(n) = n XOR 1. - Odimar Fabeny, Sep 05 2004
G.f.: (1-x+2x^2)/((1-x)*(1-x^2)). - Mitchell Harris, Jan 10 2005
a(n+1) = lod_2(A059841(n)). - Philippe Deléham, Apr 26 2009
a(n) = 2*n - a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{k=1..n-1} (-1)^(n-1-k)*C(n+1,k). - Mircea Merca, Feb 07 2013
For n > 1, a(n)^a(n) == 1 (mod n). - Thomas Ordowski, Jan 04 2016
Sum_{n>=0,n<>1} (-1)^n/a(n) = log(2) = A002162. - Peter McNair, Aug 07 2023
MAPLE
a[0]:=1:a[1]:=0:for n from 2 to 70 do a[n]:=a[n-2]+2 od: seq(a[n], n=0..68); # Zerinvary Lajos, Feb 19 2008
MATHEMATICA
Table[n + (-1)^n, {n, 0, 72}] (* or *)
CoefficientList[Series[(1 - x + 2x^2)/((1 - x)(1 - x^2)), {x, 0, 72}], x] (* Robert G. Wilson v, Jun 16 2006 *)
Flatten[Reverse/@Partition[Range[0, 69], 2]] (* or *) LinearRecurrence[{1, 1, -1}, {1, 0, 3}, 70] (* Harvey P. Dale, Jul 29 2018 *)
PROG
(Haskell)
import Data.List (transpose)
import Data.Bits (xor)
a004442 = xor 1 :: Integer -> Integer
a004442_list = concat $ transpose [a005408_list, a005843_list]
-- Reinhard Zumkeller, Jun 23 2013, Feb 01 2013, Oct 20 2011
(PARI) a(n)=n+(-1)^n \\ Charles R Greathouse IV, Nov 20 2012
(PARI) Vec((1-x+2*x^2)/((1-x)*(1-x^2)) + O(x^100)) \\ Altug Alkan, Feb 04 2016
(Python)
def a(n): return n^1
print([a(n) for n in range(69)]) # Michael S. Branicky, Jan 23 2022
CROSSREFS
Cf. A003987, A004443, A004444. Equals A014681 - 1.
Sequence in context: A114882 A306436 A355504 * A065190 A152208 A370429
KEYWORD
nonn,easy,nice
EXTENSIONS
Offset adjusted by Reinhard Zumkeller, Mar 05 2010
STATUS
approved