login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.
55

%I #75 Aug 08 2023 04:14:30

%S 1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14,17,16,19,18,21,20,23,22,25,24,

%T 27,26,29,28,31,30,33,32,35,34,37,36,39,38,41,40,43,42,45,44,47,46,49,

%U 48,51,50,53,52,55,54,57,56,59,58,61,60,63,62,65,64,67,66,69

%N Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.

%C A self-inverse permutation of the natural numbers.

%C Nonnegative numbers rearranged with least disturbance to maintain a(n) not equal to n. - _Amarnath Murthy_, Sep 13 2002

%C Essentially lodumo_2 of A059841. - _Philippe Deléham_, Apr 26 2009

%C a(n) = A180176(n) for n >= 20. - _Reinhard Zumkeller_, Aug 15 2010

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.

%D J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

%H Michael De Vlieger, <a href="/A004442/b004442.txt">Table of n, a(n) for n = 0..10000</a>

%H Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.

%H <a href="/index/Ni#Nimsums">Index entries for sequences related to Nim-sums</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = n XOR 1. - _Odimar Fabeny_, Sep 05 2004

%F G.f.: (1-x+2x^2)/((1-x)*(1-x^2)). - Mitchell Harris, Jan 10 2005

%F a(n+1) = lod_2(A059841(n)). - _Philippe Deléham_, Apr 26 2009

%F a(n) = 2*n - a(n-1) - 1 with n > 0, a(0)=1. - _Vincenzo Librandi_, Nov 18 2010

%F a(n) = Sum_{k=1..n-1} (-1)^(n-1-k)*C(n+1,k). - _Mircea Merca_, Feb 07 2013

%F For n > 1, a(n)^a(n) == 1 (mod n). - _Thomas Ordowski_, Jan 04 2016

%F Sum_{n>=0,n<>1} (-1)^n/a(n) = log(2) = A002162. - _Peter McNair_, Aug 07 2023

%p a[0]:=1:a[1]:=0:for n from 2 to 70 do a[n]:=a[n-2]+2 od: seq(a[n], n=0..68); # _Zerinvary Lajos_, Feb 19 2008

%t Table[n + (-1)^n, {n, 0, 72}] (* or *)

%t CoefficientList[Series[(1 - x + 2x^2)/((1 - x)(1 - x^2)), {x, 0, 72}], x] (* _Robert G. Wilson v_, Jun 16 2006 *)

%t Flatten[Reverse/@Partition[Range[0,69],2]] (* or *) LinearRecurrence[{1,1,-1},{1,0,3},70] (* _Harvey P. Dale_, Jul 29 2018 *)

%o (Haskell)

%o import Data.List (transpose)

%o import Data.Bits (xor)

%o a004442 = xor 1 :: Integer -> Integer

%o a004442_list = concat $ transpose [a005408_list, a005843_list]

%o -- _Reinhard Zumkeller_, Jun 23 2013, Feb 01 2013, Oct 20 2011

%o (PARI) a(n)=n+(-1)^n \\ _Charles R Greathouse IV_, Nov 20 2012

%o (PARI) Vec((1-x+2*x^2)/((1-x)*(1-x^2)) + O(x^100)) \\ _Altug Alkan_, Feb 04 2016

%o (Python)

%o def a(n): return n^1

%o print([a(n) for n in range(69)]) # _Michael S. Branicky_, Jan 23 2022

%Y Cf. A003987, A004443, A004444. Equals A014681 - 1.

%Y Cf. A005843, A005408, A059841.

%Y Cf. A002162

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_

%E Offset adjusted by _Reinhard Zumkeller_, Mar 05 2010