The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163336 Peano curve in an n X n grid, starting downwards from the top left corner, listed antidiagonally as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... 25
 0, 5, 1, 6, 4, 2, 47, 7, 3, 15, 48, 46, 8, 14, 16, 53, 49, 45, 9, 13, 17, 54, 52, 50, 44, 10, 12, 18, 59, 55, 51, 39, 43, 11, 23, 19, 60, 58, 56, 38, 40, 42, 24, 22, 20, 425, 61, 57, 69, 37, 41, 29, 25, 21, 141, 426, 424, 62, 68, 70, 36, 30, 28, 26, 140, 142, 431, 427 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS A. Karttunen, Table of n, a(n) for n = 0..3320 E. H. Moore, On Certain Crinkly Curves, Transactions of the American Mathematical Society, volume 1, number 1, 1900, pages 72-90.  (And errata.)  See section 7 (figure 3 with Y downwards is the table here). Giuseppe Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, volume 36, number 1, 1890, pages 157-160.  Also EUDML (link to GDZ). Rémy Sigrist, Colored scatterplot of (x, y) such that 0 <= x, y < 3^6 (where the hue is function of T(x, y)) Eric Weisstein's World of Mathematics, Hilbert curve (this curve called "Hilbert II"). Wikipedia, Self-avoiding walk Wikipedia, Space-filling curve EXAMPLE The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):    0  5  6 47 48 53 54 59 60    1  4  7 46 49 52 55 58 61    2  3  8 45 50 51 56 57 62   15 14  9 44 39 38 69 68 63   16 13 10 43 40 37 70 67 64   17 12 11 42 41 36 71 66 65   18 23 24 29 30 35 72 77 78   19 22 25 28 31 34 73 76 79   20 21 26 27 32 33 74 75 80 MATHEMATICA b[{n_, k_}, {m_}] := (A[n, k] = m - 1); MapIndexed[b, List @@ PeanoCurve[4][[1]]]; Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *) CROSSREFS Transpose: A163334. Inverse: A163337. a(n) = A163332(A163330(n)) = A163327(A163333(A163328(n))) = A163334(A061579(n)). One-based version: A163340. Row sums: A163342. Row 0: A163481. Column 0: A163480. Central diagonal: A163343. See A163357 and A163359 for the Hilbert curve. Sequence in context: A077491 A086231 A201419 * A173898 A343344 A200644 Adjacent sequences:  A163333 A163334 A163335 * A163337 A163338 A163339 KEYWORD nonn,tabl AUTHOR Antti Karttunen, Jul 29 2009 EXTENSIONS Name corrected by Kevin Ryde, Aug 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 12:46 EDT 2021. Contains 346385 sequences. (Running on oeis4.)