Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 08 2021 06:16:04
%S 0,5,1,6,4,2,47,7,3,15,48,46,8,14,16,53,49,45,9,13,17,54,52,50,44,10,
%T 12,18,59,55,51,39,43,11,23,19,60,58,56,38,40,42,24,22,20,425,61,57,
%U 69,37,41,29,25,21,141,426,424,62,68,70,36,30,28,26,140,142,431,427
%N Peano curve in an n X n grid, starting downwards from the top left corner, listed antidiagonally as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
%H A. Karttunen, <a href="/A163336/b163336.txt">Table of n, a(n) for n = 0..3320</a>
%H E. H. Moore, <a href="https://doi.org/10.1090/S0002-9947-1900-1500526-4">On Certain Crinkly Curves</a>, Transactions of the American Mathematical Society, volume 1, number 1, 1900, pages 72-90. (And <a href="https://doi.org/10.1090/S0002-9947-1900-1500428-3/">errata</a>.) See section 7 (figure 3 with Y downwards is the table here).
%H Giuseppe Peano, <a href="https://doi.org/10.1007/BF01199438">Sur une courbe, qui remplit toute une aire plane</a>, Mathematische Annalen, volume 36, number 1, 1890, pages 157-160. Also <a href="https://eudml.org/doc/157489">EUDML</a> (link to GDZ).
%H Rémy Sigrist, <a href="/A163336/a163336.png">Colored scatterplot of (x, y) such that 0 <= x, y < 3^6</a> (where the hue is function of T(x, y))
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HilbertCurve.html">Hilbert curve</a> (this curve called "Hilbert II").
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Space-filling_curve">Space-filling curve</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
%e 0 5 6 47 48 53 54 59 60
%e 1 4 7 46 49 52 55 58 61
%e 2 3 8 45 50 51 56 57 62
%e 15 14 9 44 39 38 69 68 63
%e 16 13 10 43 40 37 70 67 64
%e 17 12 11 42 41 36 71 66 65
%e 18 23 24 29 30 35 72 77 78
%e 19 22 25 28 31 34 73 76 79
%e 20 21 26 27 32 33 74 75 80
%t b[{n_, k_}, {m_}] := (A[n, k] = m - 1);
%t MapIndexed[b, List @@ PeanoCurve[4][[1]]];
%t Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Mar 07 2021 *)
%Y Transpose: A163334. Inverse: A163337. a(n) = A163332(A163330(n)) = A163327(A163333(A163328(n))) = A163334(A061579(n)). One-based version: A163340. Row sums: A163342. Row 0: A163481. Column 0: A163480. Central diagonal: A163343.
%Y See A163357 and A163359 for the Hilbert curve.
%K nonn,tabl
%O 0,2
%A _Antti Karttunen_, Jul 29 2009
%E Name corrected by _Kevin Ryde_, Aug 28 2020