OFFSET
0,2
COMMENTS
A self-inverse permutation of the nonnegative numbers.
a(n) is the smallest nonnegative integer not yet in the sequence such that n + a(n) is one less than a square. - Franklin T. Adams-Watters, Apr 06 2009
From Michel Marcus, Mar 01 2021: (Start)
Array T(n,k) = (n+k)^2/2 + (n+3*k)/2 for n,k >= 0 read by descending antidiagonals.
Array T(n,k) = (n+k)^2/2 + (3*n+k)/2 for n,k >= 0 read by ascending antidiagonals. (End)
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Madeline Brandt and Kåre Schou Gjaldbæk, Classification of Quadratic Packing Polynomials on Sectors of R^2, arXiv:2102.13578 [math.NT], 2021. See Figure 9 p. 17.
Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024.
FORMULA
Row (or antidiagonal) n = 0, 1, 2, ... contains the integers from A000217(n) to A000217(n+1)-1 in reverse order (for diagonals, "reversed" with respect to the canonical "falling" order, cf. A001477/table). - M. F. Hasler, Nov 09 2021
From Alois P. Heinz, Feb 10 2023: (Start)
T(n,k) = n*(n+3)/2 - k.
Sum_{k=0..n} k * T(n,k) = A002419(n).
Sum_{k=0..n} k^2 * T(n,k) = A119771(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A226725(n). (End)
EXAMPLE
Read as a triangle, the sequence is:
0
2 1
5 4 3
9 8 7 6
14 13 12 11 10
(...)
As an infinite square matrix (cf. the "table" link, 2nd paragraph) it reads:
0 2 5 9 14 20 ...
1 4 8 13 19 22 ...
3 7 12 18 23 30 ...
6 11 17 24 31 39 ...
(...)
MAPLE
T:= (n, k)-> n*(n+3)/2-k:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Feb 10 2023
MATHEMATICA
Module[{nn=20}, Reverse/@TakeList[Range[0, (nn(nn+1))/2], Range[nn]]]// Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jul 06 2018 *)
PROG
(PARI) A061579_row(n)=vector(n+=1, j, n*(n+1)\2-j)
A061579_upto(n)=concat([A061579_row(r)|r<-[0..sqrtint(2*n)]]) \\ yields approximately n terms: actual number differs by less than +- sqrt(n). - M. F. Hasler, Nov 09 2021
(Python)
from math import isqrt
def A061579(n): return (r:=isqrt((n<<3)+1)-1>>1)*(r+2)-n # Chai Wah Wu, Feb 10 2023
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 21 2001
STATUS
approved