login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119771
Product of n^2 and n-th tetrahedral number: a(n) = n^3*(n+1)*(n+2)/6.
2
0, 1, 16, 90, 320, 875, 2016, 4116, 7680, 13365, 22000, 34606, 52416, 76895, 109760, 153000, 208896, 280041, 369360, 480130, 616000, 781011, 979616, 1216700, 1497600, 1828125, 2214576, 2663766, 3183040, 3780295, 4464000, 5243216, 6127616, 7127505, 8253840
OFFSET
0,3
COMMENTS
If n is divisible by 10, then a(n) is divisible by 1000.
FORMULA
From Alois P. Heinz, Feb 10 2023: (Start)
a(n) = Sum_{k=0..n} k^2 * A061579(n,k).
G.f.: x*(x+1)*(9*x+1)/(x-1)^6. (End)
From Amiram Eldar, Feb 13 2023: (Start)
Sum_{n>=1} 1/a(n) = 39/8 - 3*Pi^2/4 + 3*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 12*log(2) - 51/8 - 3*Pi^2/8 + 9*zeta(3)/4. (End)
EXAMPLE
a(25) = n^3*(n+1)*(n+2)/6 = 25^3*(25+1)*(25+2)/6 = 15625*26*27/6 = 15625*13*9 = 1828125.
MAPLE
with(combinat):a:=n->sum(sum(sum(binomial(n+2, 2)/3, j=1..n), k=1..n), m=1..n): seq(a(n), n=0..31); # Zerinvary Lajos, May 30 2007
MATHEMATICA
a[n_] := n^3*(n+1)*(n+2)/6; Array[a, 35, 0] (* Amiram Eldar, Feb 13 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Brandon Ang (xyz1236(AT)verizon.net), Jun 28 2006
STATUS
approved