login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253131
Number of length 3+2 0..n arrays with the sum of medians of adjacent triples multiplied by some arrangement of +-1 equal to zero.
1
16, 90, 281, 673, 1356, 2452, 4083, 6409, 9584, 13806, 19261, 26185, 34796, 45368, 58151, 73457, 91568, 112834, 137569, 166161, 198956, 236380, 278811, 326713, 380496, 440662, 507653, 582009, 664204, 754816, 854351, 963425, 1082576, 1212458
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7).
Empirical for n mod 2 = 0: a(n) = (35/48)*n^4 + (47/8)*n^3 + (73/12)*n^2 + 3*n + 1.
Empirical for n mod 2 = 1: a(n) = (35/48)*n^4 + (47/8)*n^3 + (73/12)*n^2 + (21/8)*n + (11/16).
Empirical g.f.: x*(16 + 42*x + 27*x^2 - 12*x^4 - 4*x^5 + x^6) / ((1 - x)^5*(1 + x)^2). - Colin Barker, Dec 09 2018
EXAMPLE
Some solutions for n=10:
.10....8....7....2....3....0....4...10....3....7....0....9....3....5....5...10
..0....1....3....9....3....4....1....4....1....0....1....1....0....0...10....6
..4...10....3....1....6....3....1....0....4....7....1....4....1....1....5....1
..8....0....7....1....0...10....5....8....0....0....2....9....0....2...10....5
..8....9....6....4....7....7....2....8....4...10....4....8....7....3....3....0
CROSSREFS
Row 3 of A253129.
Sequence in context: A240262 A264531 A192129 * A119771 A055920 A055856
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 27 2014
STATUS
approved