login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253132
Number of length 4+2 0..n arrays with the sum of medians of adjacent triples multiplied by some arrangement of +-1 equal to zero
1
40, 393, 2058, 7257, 19990, 46945, 98124, 187593, 335106, 566597, 915078, 1423385, 2144128, 3140689, 4491642, 6289609, 8642310, 11679353, 15549300, 20420721, 26492194, 33986741, 43152838, 54278609, 67682648, 83714937, 102776362
OFFSET
1,1
COMMENTS
Row 4 of A253129
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +5*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +18*a(n-7) -18*a(n-8) +10*a(n-9) -12*a(n-10) +12*a(n-11) -5*a(n-12) +3*a(n-13) -3*a(n-14) +a(n-15)
Empirical for n mod 3 = 0: a(n) = (2/15)*n^6 + (1273/405)*n^5 + (298/27)*n^4 + (601/81)*n^3 + (143/15)*n^2 + (238/45)*n + 1
Empirical for n mod 3 = 1: a(n) = (2/15)*n^6 + (1273/405)*n^5 + (298/27)*n^4 + (203/27)*n^3 + (4001/405)*n^2 + (32/5)*n + (17/9)
Empirical for n mod 3 = 2: a(n) = (2/15)*n^6 + (1273/405)*n^5 + (298/27)*n^4 + (601/81)*n^3 + (3781/405)*n^2 + (218/45)*n + (73/81)
EXAMPLE
Some solutions for n=8
..8....0....8....3....6....1....3....8....3....1....2....0....1....7....3....6
..2....2....1....5....2....1....3....0....1....2....3....1....4....3....3....2
..4....8....3....4....3....7....2....0....0....0....3....6....2....1....0....3
..2....0....1....5....8....1....4....6....3....0....5....7....6....7....5....7
..6....2....0....8....8....4....5....5....8....1....7....1....2....1....6....5
..6....7....8....6....1....4....2....0....3....8....2....0....4....8....4....3
CROSSREFS
Sequence in context: A229716 A221820 A301528 * A293969 A168192 A251129
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 27 2014
STATUS
approved