The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055856 Susceptibility series H_4 for 2-dimensional Ising model (divided by 2). 2
1, 16, 90, 328, 888, 2016, 3994, 7212, 12070, 19112, 28846, 41976, 59116, 81132, 108738, 142972, 184638, 234952, 294806, 365596, 448296, 544492, 655230, 782292, 926794, 1090716, 1275238, 1482548, 1713880, 1971636, 2257102, 2572896, 2920350, 3302308, 3720138 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
A. J. Guttmann and I. G. Enting, Solvability of some statistical mechanical systems, Phys. Rev. Lett., 76 (1996), 344-347.
A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
D. Hansel et al., Analytical properties of the anisotropic cubic Ising model, J. Stat. Phys., 48 (1987), 69-80.
FORMULA
G.f.: (1 + 15*x + 71*x^2 + 192*x^3 + 326*x^4 + 388*x^5 + 326*x^6 + 192*x^7 + 71*x^8 + 15*x^9 + x^10)/((1-x^3)*(1-x)^4*(1+x)^3).
a(n) = (4794*n^4 + 19194*n^2 + 3349 - 81*(-1)^n*(2*n^2 + 5) + 512*ChebyshevT(n, -1/2]))/1728, for n >= 1, with a(0) = 1. - G. C. Greubel, Jan 16 2020
MAPLE
1, seq( simplify( (4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*ChebyshevT(n, -1/2))/1728 ), n=1..40); # G. C. Greubel, Jan 16 2020
MATHEMATICA
Join[{1}, Table[(4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*ChebyshevT[n, -1/2])/1728, {n, 40}]] (* G. C. Greubel, Jan 16 2020 *)
LinearRecurrence[{1, 3, -2, -4, 0, 4, 2, -3, -1, 1}, {1, 16, 90, 328, 888, 2016, 3994, 7212, 12070, 19112, 28846}, 40] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(PARI) Vec((1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1-x^3)*(1-x)^4*(1+x)^3) + O(x^40)) \\ Colin Barker, Dec 10 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 +15*x +71*x^2 +192*x^3 +326*x^4 +388*x^5 +326*x^6 +192*x^7 + 71*x^8 +15*x^9 +x^10)/((1-x^3)*(1-x^2)^3*(1-x)) )); // G. C. Greubel, Jan 16 2020
(Sage) [1]+[(4794*n^4 +19194*n^2 +3349 -81*(-1)^n*(2*n^2 +5) + 512*chebyshev_T(n, -1/2))/1728 for n in (1..40)] # G. C. Greubel, Jan 16 2020
CROSSREFS
Sequence in context: A253131 A119771 A055920 * A195591 A240292 A050406
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 07 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 03:22 EDT 2024. Contains 372957 sequences. (Running on oeis4.)