login
A055854
Convolution of A055853 with A011782.
2
0, 1, 9, 53, 253, 1059, 4043, 14407, 48639, 157184, 489872, 1480608, 4358752, 12541184, 35364864, 97960192, 267050240, 717619200, 1903452160, 4989337600, 12937052160, 33212530688, 84484882432, 213090238464, 533236219904
OFFSET
0,3
COMMENTS
Ninth column of triangle A055587.
T(n,7) of array T as in A049600.
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
FORMULA
a(n)= T(n, 7)= A055587(n+7, 8).
G.f.: x*(1-x)^7/(1-2*x)^8.
MAPLE
seq(coeff(series(x*(1-x)^7/(1-2*x)^8, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
CoefficientList[Series[x*(1-x)^7/(1-2*x)^8, {x, 0, 30}], x] (* G. C. Greubel, Jan 16 2020 *)
LinearRecurrence[{16, -112, 448, -1120, 1792, -1792, 1024, -256}, {0, 1, 9, 53, 253, 1059, 4043, 14407, 48639, 157184}, 40] (* Harvey P. Dale, Nov 04 2023 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^7/(1-2*x)^8)) \\ G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^7/(1-2*x)^8 )); // G. C. Greubel, Jan 16 2020
(Sage)
def A055854_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^7/(1-2*x)^8 ).list()
A055854_list(30) # G. C. Greubel, Jan 16 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang May 30 2000
STATUS
approved