login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049600 Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < ... < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= ... <= y(n-1) <= y(n)=j, for i >= 0, j >= 0. 29
0, 0, 1, 0, 1, 2, 0, 1, 3, 4, 0, 1, 4, 8, 8, 0, 1, 5, 13, 20, 16, 0, 1, 6, 19, 38, 48, 32, 0, 1, 7, 26, 63, 104, 112, 64, 0, 1, 8, 34, 96, 192, 272, 256, 128, 0, 1, 9, 43, 138, 321, 552, 688, 576, 256, 0, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Essentially array A059576 divided by sequence A011782.

[Hetyei] calls a variant of this array (omitting the initial row of zeros) the asymmetric Delannoy numbers and shows how they arise in certain lattice path enumeration problems and a face enumeration problem associated to Jacobi polynomials. - Peter Bala, Oct 29 2008

Essentially triangle in A208341. - Philippe Deléham, Mar 23 2012

T(n+k,n) is the dot product of a vector from the n-th row of Pascal's triangle A007318 with a vector created by the first n+1 values evaluated from the cycle index of symmetry group S(k). Example: T(4+3,4) = T(7,4) = {1,4,6,4,1}.{1,4,10,20,35} = 192. - Richard Turk, Sep 21 2017

The formula T(n,k) = Sum_{r=0..n-1} C(k+r,r)*C(n-1,r) (Paul D. Hanna, Oct 06 2006) counts the paths of the title by number, r, of interior vertices in the path. - David Callan, Nov 25 2021

LINKS

Reinhard Zumkeller, Rows n = 0..125 of table, flattened

David Callan, Some bijections for lattice paths, arXiv:2112.05241 [math.CO], 2021.

David Callan, A bijection for Delannoy paths, arXiv:2202.04649 [math.CO], 2022.

R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.

R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.

Robert Cori and Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, <hal-01207612>.

Sergio Falcon, On the complex k-Fibonacci numbers, Cogent Mathematics, (2016), 3: 1201944. See Table 1.

G. Hetyei, Central Delannoy numbers, Legendre polynomials and a balanced join operation preserving the Cohen-Macauley property, Annals of Combinatorics, 10 (2006), 443-462.

G. Hetyei, Central Delannoy numbers and balanced Cohen-Macaulay complexes, Ann. Comb. 10 (2006), 443-462.

G. Hetyei, Links we almost missed between Delannoy numbers and Legendre polynomials

Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.

M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.

Clark Kimberling, Enumeration of paths, compositions of integers and Fibonacci numbers, Fib. Quarterly 39 (5) (2001) 430-435, Figure 1.

Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 3C.

Thomas Selig, Combinatorial aspects of sandpile models on wheel and fan graphs, arXiv:2202.06487 [math.CO], 2022.

Luis Verde-Star A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.

FORMULA

T(n,k) = Sum_{j=0..n-1} C(k+j,j)*C(n-1,j). - Paul D. Hanna, Oct 06 2006

T(i,j) = 2*T(i-1,j) + T(i,j-1) - T(i-1,j-1) with T(0,0)=1 and T(i,j)=0 if one of i,j<0. - Theodore Kolokolnikov, Jul 05 2010

O.g.f.: t*x/(1 - (2*t+1)*x + t*x^2) = t*x + (t + 2*t^2)*x^2 + (t + 3*t^2 + 4*t^3)*x^3 + .... Taking the row reverse of this triangle (with an additional column of 1's) gives A055587. - Peter Bala, Sep 10 2012

T(i,0) = 2^(i-1) and for j>0, T(i,j) = T(i,j-1) + Sum_{k=0..i-1} T(k,j). - Glen Whitney, Aug 17 2021

T(n, k) = JacobiP(k - 1, 0, 1 - 2*k + n, 3) for k >= 1. - Peter Luschny, Nov 25 2021

EXAMPLE

Diagonals (each starting on row 1): {0}; {0,1}; {0,1,2}; ...

Array begins:

0 0 0 0 0 0 0 0 0 0 0 ...

1 1 1 1 1 1 1 1 1 1 1 ...

2 3 4 5 6 7 8 9 10 11 12 ...

4 8 13 19 26 34 43 53 64 76 89 ...

8 20 38 63 96 138 190 253 328 416 518 ...

16 48 104 192 321 501 743 1059 1462 1966 2586 ...

32 112 272 552 1002 1683 2668 4043 5908 8378 11584 ...

64 256 688 1520 2972 5336 8989 14407 22180 33028 47818 ...

Triangle begins:

0;

0, 1;

0, 1, 2;

0, 1, 3, 4;

0, 1, 4, 8, 8;

0, 1, 5, 13, 20, 16;

0, 1, 6, 19, 38, 48, 32;

0, 1, 7, 26, 63, 104, 112, 64;

...

(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) where DELTA is the operator defined in A084938 begins:

1;

1, 0;

1, 2, 0;

1, 3, 4, 0;

1, 4, 8, 8, 0;

1, 5, 13, 20, 16, 0;

1, 6, 19, 38, 48, 32, 0;

1, 7, 26, 63, 104, 112, 64, 0;

MAPLE

A049600 := proc(n, k)

add(binomial(k+j, j)*binomial(n-1, j), j=0..n-1) ;

end proc: # R. J. Mathar, Oct 26 2015

MATHEMATICA

t[n_, k_] := Hypergeometric2F1[ n-k+1, 1-k, 1, -1] // Floor; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)

t[n_, k_] := Sum[LaguerreL[n-k, i, 0]* LaguerreL[k-i, i, 0], {i, 0, k}] //Floor; Table[t[n, k], {n, 0, 16}, {k, -1, n}] (* Richard Turk, Sep 08 2017 *)

T[n_, k_] := If[k == 0, 0, JacobiP[k - 1, 0, 1 - 2*k + n, 3]];

Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)

PROG

(PARI) {A(i, j) = polcoeff( (x / (1 - 2*x)) * ((1 - x) / (1 - 2*x))^j + x * O(x^i), i)}; /* Michael Somos, Oct 01 2003 */

(PARI) T(n, k)=sum(j=0, n-1, binomial(k+j, j)*binomial(n-1, j)) \\ Paul D. Hanna, Oct 06 2006

(Haskell)

a049600 n k = a049600_tabl !! n !! k

a049600_row n = a049600_tabl !! n

a049600_tabl = [0] : map (0 :) a208341_tabl

-- Reinhard Zumkeller, Apr 15 2014

CROSSREFS

Diagonal sums are even-indexed Fibonacci numbers. Alternating (+-) diagonal sums are signed Fibonacci numbers.

T(n, n-1) = A001850(n) (Delannoy numbers). T(n, n)=A047781. Cf. A035028, A055587.

Cf. A208341. A055587.

Sequence in context: A286011 A241954 A307047 * A318602 A004542 A207331

Adjacent sequences: A049597 A049598 A049599 * A049601 A049602 A049603

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:38 EST 2022. Contains 358431 sequences. (Running on oeis4.)