OFFSET
0,4
COMMENTS
A049602 gives the coefficients of x in the reduction of the polynomial p(n,x)=(1/2)((x+1)^n+(x-1)^n) by x^2->x+1. For the constant terms, see A192352. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - Clark Kimberling, Jun 29 2011
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,3,-4,1).
FORMULA
a(n)=Sum{T(2i+1, n-2i-1): i=0, 1, ..., [ (n+1)/2 ]}, array T as in A049600.
Cosh transform of Fibonacci numbers A000045 (or mean of binomial and inverse binomial transforms of A000045). E.g.f.: cosh(x)(2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Paul Barry, May 10 2003
a(n)=sum{k=0..floor(n/2), C(n, 2k)Fib(n-2k)}; - Paul Barry, May 01 2005
a(n)=2a(n-1)+3a(n-2)-4a(n-3)+a(n-4). - Paul Curtz, Jun 16 2008
G.f.: x(1-x)/((1+x-x^2)(1-3x+x^2)); a(n)=sum{k=0..n-1, (-1)^(n-k+1)*F(2k+2)*F(n-k+1)}; - Paul Barry, Jul 11 2008
MATHEMATICA
LinearRecurrence[{2, 3, -4, 1}, {0, 1, 1, 5}, 30] (* Harvey P. Dale, Jul 07 2017 *)
PROG
(PARI) a(n)=(fibonacci(2*n)-(-1)^n*fibonacci(n))/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Simpler description from Vladeta Jovovic and Thomas Baruchel, Aug 24 2004
More terms from Paul Curtz, Jun 16 2008
STATUS
approved