login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049602
a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.
4
0, 1, 1, 5, 9, 30, 68, 195, 483, 1309, 3355, 8900, 23112, 60813, 158717, 416325, 1088661, 2852242, 7463884, 19546175, 51163695, 133962621, 350695511, 918170280, 2403740304, 6293172025, 16475579353, 43133883845, 112925557953
OFFSET
0,4
COMMENTS
A049602 gives the coefficients of x in the reduction of the polynomial p(n,x)=(1/2)((x+1)^n+(x-1)^n) by x^2->x+1. For the constant terms, see A192352. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - Clark Kimberling, Jun 29 2011
FORMULA
a(n)=Sum{T(2i+1, n-2i-1): i=0, 1, ..., [ (n+1)/2 ]}, array T as in A049600.
Cosh transform of Fibonacci numbers A000045 (or mean of binomial and inverse binomial transforms of A000045). E.g.f.: cosh(x)(2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Paul Barry, May 10 2003
a(n)=sum{k=0..floor(n/2), C(n, 2k)Fib(n-2k)}; - Paul Barry, May 01 2005
a(n)=2a(n-1)+3a(n-2)-4a(n-3)+a(n-4). - Paul Curtz, Jun 16 2008
G.f.: x(1-x)/((1+x-x^2)(1-3x+x^2)); a(n)=sum{k=0..n-1, (-1)^(n-k+1)*F(2k+2)*F(n-k+1)}; - Paul Barry, Jul 11 2008
MATHEMATICA
LinearRecurrence[{2, 3, -4, 1}, {0, 1, 1, 5}, 30] (* Harvey P. Dale, Jul 07 2017 *)
PROG
(PARI) a(n)=(fibonacci(2*n)-(-1)^n*fibonacci(n))/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A049601.
Sequence in context: A242329 A343420 A214902 * A350280 A119031 A271129
KEYWORD
nonn,easy
EXTENSIONS
Simpler description from Vladeta Jovovic and Thomas Baruchel, Aug 24 2004
More terms from Paul Curtz, Jun 16 2008
STATUS
approved