login
A343420
G.f.: 1/(1 - (1*x)/(1 - (2*x)^2/(1 - (3*x)^3/(1 - (4*x)^4/(1 - (5*x)^5/(1 - ...)))))).
2
1, 1, 1, 5, 9, 29, 173, 397, 1629, 7105, 47317, 136649, 612009, 3239657, 16725833, 144512653, 442002033, 2348928709, 13503344821, 87284090069, 570544117893, 6090993985577, 19814091021725, 112414559500753, 771831588041361, 5354065003116817, 43960328737547473
OFFSET
0,4
LINKS
MATHEMATICA
nmax = 26;
CoefficientList[1/(1 + ContinuedFractionK[-(k x)^k, 1, {k, 1, nmax}]) + O[x]^(nmax+1), x] (* Jean-François Alcover, Apr 18 2021 *)
PROG
(PARI) a(n) = my(A=1+O(x)); for(i=1, n, A=1-((n-i+1)*x)^(n-i+1)/A); polcoef(1/A, n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 16 2021
STATUS
approved