login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343423
Prime numbers p such that Euclidean distance from origin to p in hexagonal grid sets a new record. Number '1' is placed at the origin and '2' at (1, 0). Number 'm' (m >= 3) is placed by moving one unit forward in the direction from 'm-2' to 'm-1', if m - 1 is not a prime; otherwise, making 1/6 turn counterclockwise at 'm-1' followed by moving one unit forward.
0
2, 3, 5, 7, 11, 29, 31, 59, 89, 127, 131, 157, 191, 193, 223, 227, 251, 257, 409, 521, 719, 757, 797, 809, 877, 881, 967, 971, 1009, 1013, 1049, 1087, 1091, 1117, 1123, 1277, 1301, 1361, 1409, 1423, 1447, 1451, 1523, 1531, 1657, 1693, 1697, 1699, 5273, 5323
OFFSET
1,1
EXAMPLE
Hexagonal grid with integers up to 85:
29<---28<---27<---26<-7,25<=6,24<==5/23
/ / \\
30 8 4/22
/ / \\
31,53<-52<---51<---50<--9,49<--48<---47 3,21
/ \ / \ / \
54 32 10 1,46--->2 20
/ \ / \ \
55,79<--78<-33,77<--76<-11,75<--74<---73 45 19
// \ \ \ \ /
56,80 34 12 72 44 18
// \ \ \ / \ /
57,81 35 13--->14->15,71-->16-->17,43
// \ / /
58,82 36 70 42
// \ / /
59,83 37--->38->39,69-->40--->41
\\ /
60,84 68
\\ /
61,85--->62--->63--->64--->65--->66--->67
Prime number (p), square of the distance (s) from p to origin, and index (n) in the sequence for p up to 71 are:
p: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
s: 1 3 7 9 13 13 9 7 7 37 43 31 19 9 1 43 109 109 43 7
n: 1 2 3 4 5 -- -- -- -- 6 7 -- -- -- -- -- 8 -- -- --
PROG
(Python)
from sympy import isprime
dx = [2, 1, -1, -2, -1, 1]; dy = [0, 1, 1, 0, -1, -1]
x = 0; y = 0; rec = 0; d = 0
for n in range(2, 10001):
if isprime(n-1) == 1: d += 1; d %= 6
x += dx[d]; y += dy[d]; s = x*x + 3*y*y
if isprime(n) == 1 and s > rec: print(n); rec = s
CROSSREFS
KEYWORD
nonn
AUTHOR
Ya-Ping Lu, Apr 15 2021
STATUS
approved