login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.
4

%I #27 Jul 07 2017 13:59:06

%S 0,1,1,5,9,30,68,195,483,1309,3355,8900,23112,60813,158717,416325,

%T 1088661,2852242,7463884,19546175,51163695,133962621,350695511,

%U 918170280,2403740304,6293172025,16475579353,43133883845,112925557953

%N a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.

%C A049602 gives the coefficients of x in the reduction of the polynomial p(n,x)=(1/2)((x+1)^n+(x-1)^n) by x^2->x+1. For the constant terms, see A192352. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - _Clark Kimberling_, Jun 29 2011

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-4,1).

%F a(n)=Sum{T(2i+1, n-2i-1): i=0, 1, ..., [ (n+1)/2 ]}, array T as in A049600.

%F Cosh transform of Fibonacci numbers A000045 (or mean of binomial and inverse binomial transforms of A000045). E.g.f.: cosh(x)(2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - _Paul Barry_, May 10 2003

%F a(n)=sum{k=0..floor(n/2), C(n, 2k)Fib(n-2k)}; - _Paul Barry_, May 01 2005

%F a(n)=2a(n-1)+3a(n-2)-4a(n-3)+a(n-4). - _Paul Curtz_, Jun 16 2008

%F G.f.: x(1-x)/((1+x-x^2)(1-3x+x^2)); a(n)=sum{k=0..n-1, (-1)^(n-k+1)*F(2k+2)*F(n-k+1)}; - _Paul Barry_, Jul 11 2008

%t LinearRecurrence[{2,3,-4,1},{0,1,1,5},30] (* _Harvey P. Dale_, Jul 07 2017 *)

%o (PARI) a(n)=(fibonacci(2*n)-(-1)^n*fibonacci(n))/2 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A049601.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_

%E Simpler description from _Vladeta Jovovic_ and _Thomas Baruchel_, Aug 24 2004

%E More terms from _Paul Curtz_, Jun 16 2008