login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035028
First differences of A002002.
3
4, 20, 104, 552, 2972, 16172, 88720, 489872, 2719028, 15157188, 84799992, 475894200, 2677788492, 15102309468, 85347160608, 483183316512, 2739851422820, 15558315261812, 88462135512712, 503569008273992, 2869602773253884, 16368396446913420, 93449566652932784
OFFSET
0,1
LINKS
FORMULA
a(n) = A049600(n, n-3).
D-finite with recurrence: (n+2)*a(n) - (7*n+8)*a(n-1) + (7*n-8)*a(n-2) - (n-2)*a(n-3) = 0. - R. J. Mathar, Jan 28 2020
a(n) = ((n+1)*(n+3)*A001850(n+3) - (6*n^2 +22*n +17)*A001850(n+2) + (n+2)*(5*n+8)*A001850(n+1))/(2*(n+1)*(n+2)), A001850(n) = LegrndreP(n, 3). - G. C. Greubel, Oct 19 2022
MATHEMATICA
Differences[CoefficientList[Series[((1-x)/Sqrt[1-6x+x^2]-1)/2, {x, 0, 30}], x]] (* Harvey P. Dale, Jun 04 2011 *)
With[{P=LegendreP}, Table[(n*(n+2)*P[n+2, 3] -(6*n^2+10*n+1)*P[n+1, 3] +(n+1)*(5*n+ 3)*P[n, 3])/(2*n*(n+1)), {n, 30}]] (* G. C. Greubel, Oct 19 2022 *)
PROG
(Magma) I:=[4, 20, 104]; [n le 3 select I[n] else ( (7*n+1)*Self(n-1) - (7*n-15)*Self(n-2) + (n-3)*Self(n-3) )/(n+1): n in [1..30]]; // G. C. Greubel, Oct 19 2022
(SageMath)
def A001850(n): return gen_legendre_P(n, 0, 3)
def A035028(n): return ((n+1)*(n+3)*A001850(n+3) - (6*n^2 +22*n +17)*A001850(n+2) + (n+2)*(5*n+8)*A001850(n+1))/(2*(n+1)*(n+2))
[A035028(n) for n in range(40)] # G. C. Greubel, Oct 19 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Harvey P. Dale, Jun 04 2011
STATUS
approved