login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035029
a(n) = Sum_{k=0..n} (k+1) * Sum_{j=0..n} 2^j*binomial(n,j)*binomial(n-k,j).
4
1, 5, 26, 138, 743, 4043, 22180, 122468, 679757, 3789297, 21199998, 118973550, 669447123, 3775577367, 21336790152, 120795829128, 684962855705, 3889578815453, 22115533878178, 125892252068498, 717400693313471, 4092099111728355, 23362391663233196, 133488737662062188, 763310051648602213
OFFSET
0,2
COMMENTS
Number of regions in all the dissections of a convex (n+3)-gon by non-intersecting diagonals. a(1)=5 because in the three dissections of a square we have altogether five regions: one in the "no-diagonals" dissection and two in each of the dissections by one of the two diagonals of the square. - Emeric Deutsch, Dec 28 2003
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, FUN with algorithm'01, Isola d'Elba, 2001.
FORMULA
a(n) = (1/4)*(A002002(n+2) - A002002(n+1)).
G.f.: (1-z)^2/(8*z^2*sqrt(1-6*z+z^2))-(1+z)/(8*z^2). - Emeric Deutsch, Dec 28 2003
a(n) = T(n+1, n+2), array T as in A049600.
Form an array with the m(n,1)=1 and m(1,n) = n*(n+1)/2 for n=1,2,3... The interior terms m(i,j) = m(i,j-1) + m(i-1,j-1) + m(i-1,j). The terms in the main diagonal = {a(n)}. - J. M. Bergot, Dec 01 2012
D-finite with recurrence: (n+2)*a(n) + (7*n+8)*a(n-1) - (7*n-8)*a(n-2) + (n-2)*a(n-3). - R. J. Mathar, Dec 03 2012
a(n) ~ (3+2*sqrt(2))^(n+3/2) / (2^(9/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014
a(n) = Jypergeometric2F1([-n, n+3]; [1]; -1), which satisfies the recurrence. - Benedict W. J. Irwin, Oct 14 2016
MATHEMATICA
CoefficientList[Series[(1-x)^2/(8*x^2*Sqrt[1-6*x+x^2])-(1+x)/(8*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
With[{P = LegendreP}, Table[((n+1)*(n+3)*P[n+3, 3] -(6*n^2+22*n+17)*P[n+2, 3] +(n+ 2)*(5*n+8)*P[n+1, 3])/(8*(n+1)*(n+2)), {n, 0, 40}]] (* G. C. Greubel, Oct 20 2022 *)
PROG
(Magma) I:=[1, 5, 26]; [n le 3 select I[n] else ( (7*n+1)*Self(n-1) - (7*n-15)*Self(n-2) + (n-3)*Self(n-3) )/(n+1): n in [1..30]]; // G. C. Greubel, Oct 20 2022
(SageMath)
def A001850(n): return gen_legendre_P(n, 0, 3)
def A035029(n): return ((n+1)*(n+3)*A001850(n+3) - (6*n^2 +22*n +17)*A001850(n+2) + (n+2)*(5*n+8)*A001850(n+1))/(8*(n+1)*(n+2))
[A035029(n) for n in range(40)] # G. C. Greubel, Oct 20 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved