OFFSET
0,2
COMMENTS
Binomial transform of A081910 5th binomial transform of (1,0,1,0,0,0,...). Case k=5 where a(n,k) = k^n*(n^2 - n + 2k^2)/(2k^2) with g.f. (1 - 2kx + (k^2+1)x^2)/(1-kx)^3.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..150
Index entries for linear recurrences with constant coefficients, signature (15,-75,125).
FORMULA
a(n) = 5^n*(n^2 - n + 50)/50.
G.f.: (1 - 10x + 26x^2)/(1-5x)^3.
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3); a(0)=1, a(1)=5, a(2)=26. - _Harvey P. Dale, Jul 22 2011
MATHEMATICA
Table[5^n(n^2-n+50)/50, {n, 0, 20}] (* or *) LinearRecurrence[{15, -75, 125}, {1, 5, 26}, 20] (* Harvey P. Dale, Jul 22 2011 *)
PROG
(Magma) [5^n*(n^2-n+50)/50: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
(PARI) a(n)=5^n*(n^2-n+50)/50 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 31 2003
STATUS
approved