login
A081911
a(n) = 5^n*(n^2 - n + 50)/50.
4
1, 5, 26, 140, 775, 4375, 25000, 143750, 828125, 4765625, 27343750, 156250000, 888671875, 5029296875, 28320312500, 158691406250, 885009765625, 4913330078125, 27160644531250, 149536132812500, 820159912109375
OFFSET
0,2
COMMENTS
Binomial transform of A081910 5th binomial transform of (1,0,1,0,0,0,...). Case k=5 where a(n,k) = k^n*(n^2 - n + 2k^2)/(2k^2) with g.f. (1 - 2kx + (k^2+1)x^2)/(1-kx)^3.
FORMULA
a(n) = 5^n*(n^2 - n + 50)/50.
G.f.: (1 - 10x + 26x^2)/(1-5x)^3.
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3); a(0)=1, a(1)=5, a(2)=26. - _Harvey P. Dale, Jul 22 2011
MATHEMATICA
Table[5^n(n^2-n+50)/50, {n, 0, 20}] (* or *) LinearRecurrence[{15, -75, 125}, {1, 5, 26}, 20] (* Harvey P. Dale, Jul 22 2011 *)
PROG
(Magma) [5^n*(n^2-n+50)/50: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
(PARI) a(n)=5^n*(n^2-n+50)/50 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A081912.
Sequence in context: A035029 A081569 A005573 * A081187 A182401 A363308
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 31 2003
STATUS
approved