login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208341 Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0. 9
1, 1, 2, 1, 3, 4, 1, 4, 8, 8, 1, 5, 13, 20, 16, 1, 6, 19, 38, 48, 32, 1, 7, 26, 63, 104, 112, 64, 1, 8, 34, 96, 192, 272, 256, 128, 1, 9, 43, 138, 321, 552, 688, 576, 256, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512, 1, 11, 64, 253, 743, 1683, 2972, 4048 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Previous name was: Triangle of coefficients of polynomials v(n,x) jointly generated with A160232; see the Formula section.
Row sums: (1,3,8,...), even-indexed Fibonacci numbers.
Alt. row sums: (1,-1,2,-3,...), signed Fibonacci numbers.
v(n,2) = A107839(n), v(n,n) = 2^(n-1), v(n+1,n) = A001792(n),
v(n+2,n) = A049611, v(n+3,n) = A049612.
Subtriangle of the triangle T(n,k) given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012
Essentially triangle in A049600. - Philippe Deléham, Mar 23 2012
LINKS
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x), where u(1,x) = 1, v(1,x) = 1.
As DELTA-triangle with 0 <= k <= n: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 12 2012
G.f.: (1-2*y*x+y*x^2)/(1-x-2*y*x+y*x^2). - Philippe Deléham, Mar 12 2012
T(n,k) = A106195(n-1,n-k), k = 1..n. - Reinhard Zumkeller, Dec 16 2013
From Peter Bala, Aug 11 2015: (Start)
The following remarks assume the row and column indexing start at 0.
T(n,k) = Sum_{i = 0..k} 2^(k-i)*binomial(n-k,i)*binomial(k,i) = Sum_{i = 0..k} binomial(n-k+i,i)*binomial(k,i).
Riordan array (1/(1 - x), x*(2 - x)/(1 - x)).
O.g.f. 1/(1 - (2*t + 1)*x + t*x^2) = 1 + (1 + 2*t)*x + (1 + 3*t + 4*t^2)*x^2 + ....
Read as a square array, this equals P * transpose(P^2), where P denotes Pascal's triangle A007318. (End)
For k<n, T(n,k) = T(n-1,k) + Sum_{i=1..k} T(n-i,k-i). - Glen Whitney, Aug 17 2021
EXAMPLE
First five rows:
1;
1, 2;
1, 3, 4;
1, 4, 8, 8;
1, 5, 13, 20, 16;
First five polynomials v(n,x):
1
1 + 2x
1 + 3x + 4x^2
1 + 4x + 8x^2 + 8x^3
1 + 5x + 13x^2 + 20x^3 + 16x^4
(1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 3, 4, 0;
1, 4, 8, 8, 0;
1, 5, 13, 20, 16, 0;
1, 6, 19, 38, 48, 32, 0;
Triangle in A049600 begins:
0;
0, 1;
0, 1, 2;
0, 1, 3, 4;
0, 1, 4, 8, 8;
0, 1, 5, 13, 20, 16;
0, 1, 6, 19, 38, 48, 32;
... - Philippe Deléham, Mar 23 2012
MAPLE
T := (n, k) -> hypergeom([n-k+1, -k], [1], -1):
seq(lprint(seq(simplify(T(n, k)), k=0..n)), n=0..7); # Peter Luschny, May 20 2015
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A160232 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208341 *)
PROG
(Haskell)
a208341 n k = a208341_tabl !! (n-1) !! (k-1)
a208341_row n = a208341_tabl !! (n-1)
a208341_tabl = map reverse a106195_tabl
-- Reinhard Zumkeller, Dec 16 2013
(PARI) T(n, k) = sum(i = 0, k, 2^(k-i)*binomial(n-k, i)*binomial(k, i));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print(); ); \\ Michel Marcus, Aug 14 2015
CROSSREFS
Sequence in context: A181851 A210231 A180378 * A201634 A210211 A283054
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 25 2012
EXTENSIONS
New name from Peter Luschny, May 20 2015
Offset corrected by Joerg Arndt, Aug 12 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)