login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208342
Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section.
5
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414
OFFSET
1,6
COMMENTS
Coefficient of x^(n-1): A000045(n) (Fibonacci numbers).
n-th row sum: 2^(n-1).
Mirror image of triangle in A053538. - Philippe Deléham, Mar 05 2012
Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x) = 1, v(1,x) = 1.
T(n,k) = A208747(n,k)/2^k. - Philippe Deléham, Mar 05 2012
From Philippe Deléham, Mar 12 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
O.g.f.: 1/(1 - z - x*z(1 - z + x*z)) = 1 + (1 + x)*z + (1 + x + 2*x^2)*z^2 + (1 + x + 3*x + 3*x^2)*z^3 + .... - Peter Bala, Dec 31 2015
u(n,x) = Sum_{j=1..floor((n+1)/2)} (-1)^(j-1)*binomial(n-j,j-1)*(x*(1-x))^(j-1)* (1+x)^(n+1-2*j) for n>=1. - Werner Schulte, Mar 07 2017
T(n,k) = Sum_{j=0..floor((k-1)/2)} binomial(k-1-j,j)*binomial(n-k+j,j) for k,n>0 and k<=n (conjectured). - Werner Schulte, Mar 07 2017
EXAMPLE
First five rows:
1
1, 1
1, 1, 2
1, 1, 3, 3
1, 1, 4, 5, 5
First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4.
(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
1
1, 0
1, 1, 0
1, 1, 2, 0
1, 1, 3, 3, 0
1, 1, 4, 5, 5, 0
1, 1, 5, 7, 10, 8, 0
1, 1, 6, 9, 16, 18, 13, 0
1, 1, 7, 11, 23, 31, 33, 21, 0
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208342 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208343 *)
CROSSREFS
Sequence in context: A296313 A183342 A046688 * A157283 A067049 A349976
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Feb 25 2012
STATUS
approved