login
A208339
Triangle of coefficients of polynomials v(n,x) jointly generated with A208838; see the Formula section.
5
1, 1, 3, 1, 4, 7, 1, 5, 13, 17, 1, 6, 20, 40, 41, 1, 7, 28, 72, 117, 99, 1, 8, 37, 114, 241, 332, 239, 1, 9, 47, 167, 425, 769, 921, 577, 1, 10, 58, 232, 682, 1492, 2368, 2512, 1393, 1, 11, 70, 310, 1026, 2598, 5008, 7096, 6761, 3363, 1, 12, 83, 402, 1472
OFFSET
1,3
COMMENTS
Subtriangle of the triangle given by (1, 0, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Contribution from Philippe Deléham, Mar 27 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-2*y*x+2*y*x^2-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(1,1) = T(2,2) = 0 nd T(n,k) = 0 if k<0 or if k>n. (End)
G.f.: -(1+x*y)*x*y/(-1+2*x*y-x^2*y+x^2*y^2+x). - R. J. Mathar, Aug 11 2015
EXAMPLE
First five rows:
1
1...3
1...4...7
1...5...13...17
1...6...20...40...41
First five polynomials v(n,x):
1
1 + 3x
1 + 4x + 7x^2
1 + 5x + 13x^2 + 17x^3
1 + 6x + 20x^2 + 40x^3 + 41x^4
Contribution from Philippe Deléham, Mar 27 2012: (Start)
(1, 0, -2/3, 2/3, 0, 0,...) DELTA (0, 3, -2/3, -1/3, 0, 0,...) begins :
1
1, 0
1, 3, 0
1, 4, 7, 0
1, 5, 13, 17, 0
1, 6, 20, 40, 41, 0. (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208338 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208339 *)
CROSSREFS
Cf. A208338.
Sequence in context: A054143 A104746 A350584 * A328463 A185722 A287376
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 27 2012
STATUS
approved