login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208339
Triangle of coefficients of polynomials v(n,x) jointly generated with A208838; see the Formula section.
5
1, 1, 3, 1, 4, 7, 1, 5, 13, 17, 1, 6, 20, 40, 41, 1, 7, 28, 72, 117, 99, 1, 8, 37, 114, 241, 332, 239, 1, 9, 47, 167, 425, 769, 921, 577, 1, 10, 58, 232, 682, 1492, 2368, 2512, 1393, 1, 11, 70, 310, 1026, 2598, 5008, 7096, 6761, 3363, 1, 12, 83, 402, 1472
OFFSET
1,3
COMMENTS
Subtriangle of the triangle given by (1, 0, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Contribution from Philippe Deléham, Mar 27 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-2*y*x+2*y*x^2-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(1,1) = T(2,2) = 0 nd T(n,k) = 0 if k<0 or if k>n. (End)
G.f.: -(1+x*y)*x*y/(-1+2*x*y-x^2*y+x^2*y^2+x). - R. J. Mathar, Aug 11 2015
EXAMPLE
First five rows:
1
1...3
1...4...7
1...5...13...17
1...6...20...40...41
First five polynomials v(n,x):
1
1 + 3x
1 + 4x + 7x^2
1 + 5x + 13x^2 + 17x^3
1 + 6x + 20x^2 + 40x^3 + 41x^4
Contribution from Philippe Deléham, Mar 27 2012: (Start)
(1, 0, -2/3, 2/3, 0, 0,...) DELTA (0, 3, -2/3, -1/3, 0, 0,...) begins :
1
1, 0
1, 3, 0
1, 4, 7, 0
1, 5, 13, 17, 0
1, 6, 20, 40, 41, 0. (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208338 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208339 *)
CROSSREFS
Cf. A208338.
Sequence in context: A054143 A104746 A350584 * A328463 A185722 A287376
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 27 2012
STATUS
approved