login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104746
Array T(n,k) read by antidiagonals: T(1,k) = 2^k-1 and recursively T(n,k) = T(n-1,k) + A000337(k-1), n,k >= 1.
2
1, 1, 3, 1, 4, 7, 1, 5, 12, 15, 1, 6, 17, 32, 31, 1, 7, 22, 49, 80, 63, 1, 8, 27, 66, 129, 192, 127, 1, 9, 32, 83, 178, 321, 448, 255, 1, 10, 37, 100, 227, 450, 769, 1024, 511, 1, 11, 42, 117, 276, 579, 1090, 1793, 2304, 1023, 1, 12, 47, 134, 325, 708, 1411, 2562, 4097, 5120, 2047, 1, 13, 52, 151, 374, 837, 1732, 3331, 5890, 9217, 11264, 4095
OFFSET
1,3
COMMENTS
Generally, row n of the array is the binomial transform for 0, 1, n, 2n-1, 3n-2, 4n-3, ...
FORMULA
T(2,k) = A001787(k), binomial transform of 0, 1, 2, 3, 4, 5, 6, ...
T(3,k) = A000337(k), binomial transform of 0, 1, 3, 5, 7, 9, 11, ...
T(4,k) = A027992(k-1), binomial transform of 0, 1, 4, 7, 10, 13, 16, 19, 22, 25, ...
T(5,k) = binomial transform of 0, 1, 5, 9, 13, 17, 21, 25, 29, ...
EXAMPLE
To the first row, add the terms 0, 1, 5, 17, 49, 129, ... as indicated:
1, 3, 7, 15, 31, 63, ...
0, 1, 5, 17, 49, 129, ... (getting row 2 of the array:
1, 4, 12, 32, 80, 192, ... (= A001787, binomial transform for 1,2,3, ...)
Repeat the operation, getting the following array T(n,k):
1, 3, 7, 15, 31, 63, ...
1, 4, 12, 32, 80, 192, ...
1, 5, 17, 49, 129, 321, ...
1, 6, 22, 66, 178, 450, ...
MAPLE
A000337 := proc(n)
1+(n-1)*2^n ;
end proc:
A104746 := proc(n, k)
option remember;
if n= 1 then
2^k-1 ;
else
procname(n-1, k)+A000337(k-1) ;
end if;
end proc:
for d from 1 to 12 do
for k from 1 to d do
n := d-k+1 ;
printf("%d, ", A104746(n, k)) ;
end do:
end do; # R. J. Mathar, Oct 30 2011
MATHEMATICA
A000337[n_] := (n - 1)*2^n + 1;
T[1, k_] := 2^k - 1;
T[n_, k_] := T[n, k] = T[n - 1, k] + A000337[k - 1];
Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 30 2024 *)
CROSSREFS
Cf. A104747 (antidiagonal sums), A001787, A000337, A027992, A059823.
Sequence in context: A210218 A086273 A054143 * A350584 A208339 A328463
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 23 2005
EXTENSIONS
Terms corrected by R. J. Mathar, Oct 30 2011
STATUS
approved