login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104749
Expansion of a parametrization of x^2 - y + y^2 = 0 at x = y = 0.
0
1, -2, -6, 20, -26, 324, 932, -3864, -12282, -8812, 123596, -1011048, 1302748, -9066968, -11700216, 327436496, 500340678, 4725531060, 3741191612, -11250963784, -147523219212, -1497706973320, -7306482940296, -675852523344, 10735087541148
OFFSET
0,2
FORMULA
Given g.f. A(x), then B(x) = x * A(x^2 / 4) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v + v^2.
Given g.f. A(x), then B(x) = x * A(x^2 / 16) satisfies B(x^2 / 2) = f(B(x)) where f(x) := 1 - sqrt(1 - x^2). Thus, if 0 < x_0 = B(t_0) < 1, x_{n+1} = f(x_n), t_{n+1} = t_n^2 / 2, then x_n = B(t_n). - Michael Somos, Aug 28 2018
EXAMPLE
G.f. = 1 - 2*x - 6*x^2 + 20*x^3 - 26*x^4 + 324*x^5 + 932*x^6 - 3864*x^7 + ... - Michael Somos, Aug 28 2018
MATHEMATICA
a[ n_] := If[ n < 0, 0, 16^n SeriesCoefficient[ Nest[ Sqrt[1 - (1 - (# /. x -> x^2 / 2))^2] &, x, Ceiling[Log[2, n + 1]]], {x, 0, 2 n + 1}]]; (* Michael Somos, Aug 28 2018 *)
PROG
(PARI) {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while(m<=n, m*=2; A = subst(A, x, 4*x^2); A = sqrt(A - 4*x*A^2)); polcoeff(A, n))};
CROSSREFS
Sequence in context: A343506 A128447 A032622 * A062281 A267124 A322371
KEYWORD
sign
AUTHOR
Michael Somos, Mar 24 2005
STATUS
approved