login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104748 Decimal expansion of solution to x*2^x = 1. 18
6, 4, 1, 1, 8, 5, 7, 4, 4, 5, 0, 4, 9, 8, 5, 9, 8, 4, 4, 8, 6, 2, 0, 0, 4, 8, 2, 1, 1, 4, 8, 2, 3, 6, 6, 6, 5, 6, 2, 8, 2, 0, 9, 5, 7, 1, 9, 1, 1, 0, 1, 7, 5, 5, 1, 3, 9, 6, 9, 8, 7, 9, 7, 5, 4, 3, 4, 8, 7, 4, 9, 1, 8, 7, 8, 7, 9, 9, 7, 6, 2, 2, 3, 4, 0, 5, 3, 6, 9, 3, 4, 9, 9, 1, 6, 8, 5, 8, 8, 5, 9, 2, 3, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Writing the equation as (1/2)^x = x, the solution is the value of the infinite power tower function h(t) = t^t^t^... at t = 1/2. The solution is a transcendental number. - Jonathan Sondow, Aug 29 2011

Equals LambertW(log(2))/log(2) since, for 1/E^E <= c < 1, c^c^c^...= LambertW(log(1/c))/log(1/c). - Stanislav Sykora, Nov 03 2013

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..2000

J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see p. 160.

Wikipedia, Lambert W function

EXAMPLE

x = 0.641185744504985984486200482114823666562820957191101... = (1/2)^(1/2)^(1/2)^...

MATHEMATICA

RealDigits[ ProductLog[ Log[2]]/Log[2], 10, 111][[1]] (* Robert G. Wilson v, Mar 23 2005 *)

PROG

(PARI) lambertw(log(2))/log(2) \\ Stanislav Sykora, Nov 03 2013

CROSSREFS

Equals 1/A030798.

Cf. A073084.

Sequence in context: A060780 A199391 A106333 * A117335 A244980 A021863

Adjacent sequences:  A104745 A104746 A104747 * A104749 A104750 A104751

KEYWORD

nonn,cons

AUTHOR

Zak Seidov, Mar 23 2005

EXTENSIONS

More terms from Robert G. Wilson v, Mar 23 2005

Offset corrected by R. J. Mathar, Feb 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 30 18:30 EDT 2017. Contains 284302 sequences.