login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244980 Decimal expansion of Pi/(2*sqrt(6)). 1
6, 4, 1, 2, 7, 4, 9, 1, 5, 0, 8, 0, 9, 3, 2, 0, 4, 7, 7, 7, 2, 0, 1, 8, 1, 7, 9, 8, 3, 5, 5, 0, 3, 2, 0, 5, 7, 3, 3, 6, 3, 0, 3, 3, 3, 7, 8, 2, 0, 4, 6, 1, 6, 1, 5, 5, 0, 6, 9, 4, 8, 0, 3, 3, 7, 8, 1, 9, 9, 4, 1, 1, 7, 5, 6, 5, 1, 1, 0, 5, 0, 5, 1, 6, 6, 4, 3, 4, 5, 9, 5, 2, 6, 1, 9, 7, 2, 2, 0, 3, 7, 2, 5, 7, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Eric Weisstein's MathWorld, Beta Function

FORMULA

Equals Integral_{x=0..1} (1 + x^2)/(1 + 4*x^2 + x^4) dx.

Equals beta(1/2, 1/2)/(2*sqrt(6)), where 'beta' is Euler's beta function.

From Amiram Eldar, Aug 15 2020: (Start)

Equals Integral_{x=0..oo} 1/(x^2 + 6) dx.

Equals Integral_{x=0..oo} 1/(2*x^2 + 3) dx.

Equals Integral_{x=0..oo} 1/(3*x^2 + 2) dx.

Equals Integral_{x=0..oo} 1/(6*x^2 + 1) dx. (End)

EXAMPLE

0.6412749150809320477720181798355032057336303337820461615506948033781994...

MATHEMATICA

RealDigits[Pi/(2*Sqrt[6]), 10, 106] // First

CROSSREFS

Cf. A244976, A244977, A244978, A244979.

Sequence in context: A104748 A117335 A319555 * A021863 A259620 A299998

Adjacent sequences:  A244977 A244978 A244979 * A244981 A244982 A244983

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Jul 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 17:15 EDT 2021. Contains 346335 sequences. (Running on oeis4.)