The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244980 Decimal expansion of Pi/(2*sqrt(6)). 1
 6, 4, 1, 2, 7, 4, 9, 1, 5, 0, 8, 0, 9, 3, 2, 0, 4, 7, 7, 7, 2, 0, 1, 8, 1, 7, 9, 8, 3, 5, 5, 0, 3, 2, 0, 5, 7, 3, 3, 6, 3, 0, 3, 3, 3, 7, 8, 2, 0, 4, 6, 1, 6, 1, 5, 5, 0, 6, 9, 4, 8, 0, 3, 3, 7, 8, 1, 9, 9, 4, 1, 1, 7, 5, 6, 5, 1, 1, 0, 5, 0, 5, 1, 6, 6, 4, 3, 4, 5, 9, 5, 2, 6, 1, 9, 7, 2, 2, 0, 3, 7, 2, 5, 7, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Eric Weisstein's MathWorld, Beta Function FORMULA Equals Integral_{x=0..1} (1 + x^2)/(1 + 4*x^2 + x^4) dx. Equals beta(1/2, 1/2)/(2*sqrt(6)), where 'beta' is Euler's beta function. From Amiram Eldar, Aug 15 2020: (Start) Equals Integral_{x=0..oo} 1/(x^2 + 6) dx. Equals Integral_{x=0..oo} 1/(2*x^2 + 3) dx. Equals Integral_{x=0..oo} 1/(3*x^2 + 2) dx. Equals Integral_{x=0..oo} 1/(6*x^2 + 1) dx. (End) EXAMPLE 0.6412749150809320477720181798355032057336303337820461615506948033781994... MATHEMATICA RealDigits[Pi/(2*Sqrt[6]), 10, 106] // First CROSSREFS Cf. A244976, A244977, A244978, A244979. Sequence in context: A104748 A117335 A319555 * A021863 A259620 A299998 Adjacent sequences:  A244977 A244978 A244979 * A244981 A244982 A244983 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jul 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 17:15 EDT 2021. Contains 346335 sequences. (Running on oeis4.)