Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 01 2022 14:16:35
%S 6,4,1,2,7,4,9,1,5,0,8,0,9,3,2,0,4,7,7,7,2,0,1,8,1,7,9,8,3,5,5,0,3,2,
%T 0,5,7,3,3,6,3,0,3,3,3,7,8,2,0,4,6,1,6,1,5,5,0,6,9,4,8,0,3,3,7,8,1,9,
%U 9,4,1,1,7,5,6,5,1,1,0,5,0,5,1,6,6,4,3,4,5,9,5,2,6,1,9,7,2,2,0,3,7,2,5,7,9,7
%N Decimal expansion of Pi/(2*sqrt(6)).
%D George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.
%H Vincenzo Librandi, <a href="/A244980/b244980.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BetaFunction.html">Beta Function</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals Integral_{x=0..1} (1 + x^2)/(1 + 4*x^2 + x^4) dx.
%F Equals beta(1/2, 1/2)/(2*sqrt(6)), where 'beta' is Euler's beta function.
%F From _Amiram Eldar_, Aug 15 2020: (Start)
%F Equals Integral_{x=0..oo} 1/(x^2 + 6) dx.
%F Equals Integral_{x=0..oo} 1/(2*x^2 + 3) dx.
%F Equals Integral_{x=0..oo} 1/(3*x^2 + 2) dx.
%F Equals Integral_{x=0..oo} 1/(6*x^2 + 1) dx. (End)
%F Equals Integral_{x = 0..1} 1/(2*x^2 + 3*(1 - x)^2) dx. - _Peter Bala_, Jul 22 2022
%e 0.6412749150809320477720181798355032057336303337820461615506948033781994...
%t RealDigits[Pi/(2*Sqrt[6]), 10, 106] // First
%o (PARI) Pi/sqrt(24) \\ _Charles R Greathouse IV_, Oct 01 2022
%Y Cf. A244976, A244977, A244978, A244979.
%K nonn,cons,easy
%O 0,1
%A _Jean-François Alcover_, Jul 09 2014