login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244979
Decimal expansion of Pi/(2*sqrt(5)).
4
7, 0, 2, 4, 8, 1, 4, 7, 3, 1, 0, 4, 0, 7, 2, 6, 3, 9, 3, 1, 5, 6, 3, 7, 4, 6, 4, 3, 2, 0, 4, 8, 9, 4, 7, 9, 9, 4, 6, 6, 5, 0, 9, 1, 8, 7, 0, 6, 7, 2, 0, 2, 4, 1, 9, 9, 8, 9, 7, 2, 1, 0, 2, 6, 1, 9, 2, 1, 4, 1, 8, 8, 0, 6, 1, 9, 1, 8, 8, 2, 0, 5, 1, 0, 4, 1, 4, 2, 4, 1, 5, 3, 6, 5, 7, 6, 7, 2, 4, 0, 2, 1, 5, 0, 7
OFFSET
0,1
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.
LINKS
Eric Weisstein's World of Mathematics, Beta Function
FORMULA
Equals Integral_(0..1) (1 + x^2)/(1 + 3*x^2 + x^4) dx.
From Peter Bala, Feb 16 2015: (Start)
Also equals beta(1/2, 1/2)/(2*sqrt(5)), where 'beta' is Euler's beta function.
Pi/(2*sqrt(5)) = Integral_{t = 0..a} (1 + t^2)*(1 + t^6)/(1 + t^10) dt = a + a^3/3 + a^7/7 + a^9/9 - a^11/11 - a^13/13 - a^17/17 - a^19/19 + ..., where a = 1/2(sqrt(5) - 1). Hint: differentiate atan( sqrt(5)*(t - t^3)/(1 - 3*t^2 + t^4) ). (End)
Equals (1/2)*Sum_{n >= 0} (-1)^n*( 1/(10*n + 1) + 1/(10*n + 3) + 1/(10*n + 7) + 1/(10*n + 9) ). Cf. A019692. - Peter Bala, Oct 30 2019
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 5) dx.
Equals 0.1 * Integral_{x=0..oo} log(1 + 5/x^2) dx. (End)
Equals Integral_{x = 0..1} 2/(4*x^2 + 5*(1 - x)^2) dx. - Peter Bala, Jul 22 2022
EXAMPLE
0.702481473104072639315637464320489479946650918706720241998972102619214188...
MATHEMATICA
RealDigits[Pi/(2*Sqrt[5]), 10, 105] // First
PROG
(PARI) Pi/sqrt(20) \\ Charles R Greathouse IV, Sep 30 2022
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved