OFFSET
0,1
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Beta Function
FORMULA
Equals Integral_(0..1) (1 + x^2)/(1 + 3*x^2 + x^4) dx.
From Peter Bala, Feb 16 2015: (Start)
Also equals beta(1/2, 1/2)/(2*sqrt(5)), where 'beta' is Euler's beta function.
Pi/(2*sqrt(5)) = Integral_{t = 0..a} (1 + t^2)*(1 + t^6)/(1 + t^10) dt = a + a^3/3 + a^7/7 + a^9/9 - a^11/11 - a^13/13 - a^17/17 - a^19/19 + ..., where a = 1/2(sqrt(5) - 1). Hint: differentiate atan( sqrt(5)*(t - t^3)/(1 - 3*t^2 + t^4) ). (End)
Equals (1/2)*Sum_{n >= 0} (-1)^n*( 1/(10*n + 1) + 1/(10*n + 3) + 1/(10*n + 7) + 1/(10*n + 9) ). Cf. A019692. - Peter Bala, Oct 30 2019
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 5) dx.
Equals 0.1 * Integral_{x=0..oo} log(1 + 5/x^2) dx. (End)
Equals Integral_{x = 0..1} 2/(4*x^2 + 5*(1 - x)^2) dx. - Peter Bala, Jul 22 2022
EXAMPLE
0.702481473104072639315637464320489479946650918706720241998972102619214188...
MATHEMATICA
RealDigits[Pi/(2*Sqrt[5]), 10, 105] // First
PROG
(PARI) Pi/sqrt(20) \\ Charles R Greathouse IV, Sep 30 2022
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 09 2014
STATUS
approved