login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030798
Decimal expansion of the solution to x^x = 2.
26
1, 5, 5, 9, 6, 1, 0, 4, 6, 9, 4, 6, 2, 3, 6, 9, 3, 4, 9, 9, 7, 0, 3, 8, 8, 7, 6, 8, 7, 6, 5, 0, 0, 2, 9, 9, 3, 2, 8, 4, 8, 8, 3, 5, 1, 1, 8, 4, 3, 0, 9, 1, 4, 2, 4, 7, 1, 9, 5, 9, 4, 5, 6, 9, 4, 1, 3, 9, 7, 3, 0, 3, 4, 5, 4, 9, 5, 9, 0, 5, 8, 7, 1, 0, 5, 4, 1, 3, 4, 4, 4, 6, 9, 1, 2, 8, 3, 9, 7, 3, 6
OFFSET
1,2
COMMENTS
The constant 1.559610469462... is transcendental. - Nick Hobson, Nov 29 2006
LINKS
Gianni Sarcone, Zoo of Numbers: Numbers NaN to 6, Archimedes Lab, Genoa, Italy.
Jonathan Sondow and Diego Marques, Algebraic and transcendental solutions of some exponential equations, arXiv:1108.6096 [math.NT], 2011; Annales Mathematicae et Informaticae 37 (2010) 151-164; see top of p. 4 in the link.
FORMULA
Equals log(2)/LambertW(log(2)). - Simon Plouffe, Mar 23 2005
Equals 1/A104748.
EXAMPLE
1.559610469462369349970388768765002993284883511843091424719594569...
MATHEMATICA
RealDigits[ Log[2]/ProductLog[Log[2]], 10, 111][[1]] (* Robert G. Wilson v, Mar 23 2005 *)
RealDigits[x/.FindRoot[x^x==2, {x, 1}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, May 27 2020 *)
PROG
(PARI) solve(x=1, 2, x^x-2) \\ Michel Marcus, Jan 14 2015
(PARI) log(2)/lambertw(log(2)) \\ Charles R Greathouse IV, May 14 2019
CROSSREFS
Cf. A153510 (continued fraction), A199550 (x^x^x = 2).
Sequence in context: A243447 A046600 A344327 * A331502 A021951 A206772
KEYWORD
nonn,cons
EXTENSIONS
Definition clarified by Jonathan Sondow, Sep 02 2011
STATUS
approved