login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104747
a(n) = (n-3)*2^n + n*(n+3)/2 + 3.
1
1, 4, 12, 33, 87, 222, 550, 1327, 3129, 7236, 16464, 36957, 82027, 180346, 393354, 852123, 1835181, 3932352, 8388820, 17826025, 37748991, 79692054, 167772462, 352321863, 738197857, 1543504252, 3221225880, 6710886837
OFFSET
1,2
COMMENTS
Antidiagonal sums of A104746.
FORMULA
a(n) = +7*a(n-1) -19*a(n-2) +25*a(n-3) -16*a(n-4) +4*a(n-5). G.f. -x*(1-3*x+3*x^2) / ( (2*x-1)^2*(x-1)^3 ). - R. J. Mathar, Oct 30 2011
a(n) = Sum_{i=0..n-1} (2^(n-i) - 1)*(2^i - i). - J. M. Bergot, Sep 13 2017
a(n) = Sum_{k=0..n} Sum_{i=1..n} (i-k) * C(n-k,i). - Wesley Ivan Hurt, Sep 19 2017
EXAMPLE
First few antidiagonals of A104746 are:
1;
1, 3; # Row sum 4
1, 4, 7; # Row sum 12
1, 5, 12, 15; # Row sum 33
1, 6, 17, 32, 31;
1, 7, 22, 49, 80, 63;
...
PROG
(PARI) a(n) = (n-3)*2^n + n*(n+3)/2 + 3; \\ Altug Alkan, Sep 14 2017
CROSSREFS
Cf. A104746.
Sequence in context: A227554 A305778 A343561 * A070050 A186025 A027941
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Mar 23 2005
STATUS
approved