login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n-3)*2^n + n*(n+3)/2 + 3.
1

%I #30 Sep 20 2017 10:56:48

%S 1,4,12,33,87,222,550,1327,3129,7236,16464,36957,82027,180346,393354,

%T 852123,1835181,3932352,8388820,17826025,37748991,79692054,167772462,

%U 352321863,738197857,1543504252,3221225880,6710886837

%N a(n) = (n-3)*2^n + n*(n+3)/2 + 3.

%C Antidiagonal sums of A104746.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7,-19,25,-16,4).

%F a(n) = +7*a(n-1) -19*a(n-2) +25*a(n-3) -16*a(n-4) +4*a(n-5). G.f. -x*(1-3*x+3*x^2) / ( (2*x-1)^2*(x-1)^3 ). - _R. J. Mathar_, Oct 30 2011

%F a(n) = Sum_{i=0..n-1} (2^(n-i) - 1)*(2^i - i). - _J. M. Bergot_, Sep 13 2017

%F a(n) = Sum_{k=0..n} Sum_{i=1..n} (i-k) * C(n-k,i). - _Wesley Ivan Hurt_, Sep 19 2017

%e First few antidiagonals of A104746 are:

%e 1;

%e 1, 3; # Row sum 4

%e 1, 4, 7; # Row sum 12

%e 1, 5, 12, 15; # Row sum 33

%e 1, 6, 17, 32, 31;

%e 1, 7, 22, 49, 80, 63;

%e ...

%o (PARI) a(n) = (n-3)*2^n + n*(n+3)/2 + 3; \\ _Altug Alkan_, Sep 14 2017

%Y Cf. A104746.

%K nonn,easy

%O 1,2

%A _Gary W. Adamson_, Mar 23 2005