The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186025 a(n) = 0^n + 1 - F(n-1)^2 - F(n)^2, where F = A000045. 2
 1, 0, -1, -4, -12, -33, -88, -232, -609, -1596, -4180, -10945, -28656, -75024, -196417, -514228, -1346268, -3524577, -9227464, -24157816, -63245985, -165580140, -433494436, -1134903169, -2971215072, -7778742048, -20365011073, -53316291172, -139583862444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums of number triangle A186024. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-4,1). FORMULA G.f.: (1-4x+3x^2-x^3)/(1-4x+4x^2-x^3) = (1-4x+3x^2-x^3)/((1-x)(1-3x+x^2)). a(n) = -A027941(n-1), n>0. - R. J. Mathar, Mar 21 2013 MATHEMATICA Join[{1}, Table[0^n + 1 - Fibonacci[n - 1]^2 - Fibonacci[n]^2, {n, 30}]] (* Vincenzo Librandi, Apr 24 2015 *) LinearRecurrence[{4, -4, 1}, {1, 0, -1, -4}, 30] (* Harvey P. Dale, Dec 16 2015 *) PROG (MAGMA) [0^n+1-Fibonacci(n-1)^2-Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Apr 24 2015 (PARI) x='x+O('x^50); Vec((1-4*x+3*x^2-x^3)/(1-4*x+4*x^2-x^3)) \\ G. C. Greubel, Jul 24 2017 CROSSREFS Cf. A000045, A027941. Sequence in context: A305778 A104747 A070050 * A027941 A293064 A219092 Adjacent sequences:  A186022 A186023 A186024 * A186026 A186027 A186028 KEYWORD sign,easy AUTHOR Paul Barry, Feb 10 2011 EXTENSIONS More terms from Vincenzo Librandi, Apr 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 22:20 EDT 2021. Contains 347596 sequences. (Running on oeis4.)