login
A293064
Number of vertices of type B at level n of the hyperbolic Pascal pyramid PP_(4,5).
1
0, 0, 0, 1, 4, 12, 33, 88, 232, 609, 1596, 4180, 10945, 28656, 75024, 196417, 514228, 1346268, 3524577, 9227464, 24157816, 63245985, 165580140, 433494436, 1134903169, 2971215072, 7778742048, 20365011073, 53316291172, 139583862444, 365435296161, 956722026040
OFFSET
0,5
COMMENTS
a(n+2) = A027941(n) = Fibonacci(2n+1) - 1 for n >= 0. - Georg Fischer, Oct 09 2018
LINKS
László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (2nd line of Table 1).
FORMULA
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 4.
From Colin Barker, Oct 07 2017: (Start)
G.f.: x^3 / ((1 - x)*(1 - 3*x + x^2)).
a(n) = -1 + (2^(-n)*((3-sqrt(5))^n*(2+sqrt(5)) + (-2+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5) for n>0.
(End)
MATHEMATICA
Join[{0}, LinearRecurrence[{4, -4, 1}, {0, 0, 1}, 31]] (* Jean-François Alcover, Oct 07 2017 *)
PROG
(PARI) concat(vector(3), Vec(x^3 / ((1 - x)*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Sep 30 2017
STATUS
approved