login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326804
a(n) = floor( Sum_{k>=0} n^(k*Phi) / Gamma(k*Phi + 1) ), where Gamma(x) is Euler's gamma function and Phi = (sqrt(5) + 1)/2 is the golden ratio.
1
1, 1, 4, 12, 33, 91, 249, 677, 1842, 5007, 13613, 37004, 100587, 273426, 743250, 2020363, 5491918, 14928581, 40580092, 110308128, 299848580, 815072948, 2215597985, 6022619743, 16371177808, 44501475147, 120967551231, 328823896346, 893836022201, 2429698216773, 6604604511293, 17953176427208
OFFSET
0,3
COMMENTS
a(n) ~ exp(n) * (sqrt(5) - 1)/2.
LINKS
EXAMPLE
a(n) = floor(1 + n^Phi/Gamma(Phi+1) + n^(2*Phi)/Gamma(2*Phi+1) + n^(3*Phi)/Gamma(3*Phi+1) + n^(4*Phi)/Gamma(4*Phi+1) + n^(5*Phi)/Gamma(5*Phi+1) + n^(6*Phi)/Gamma(6*Phi+1) + ...) where Phi = (sqrt(5) + 1)/2.
Sample of actual values:
n | Sum_{k>=0} n^(k*Phi) / gamma(k*Phi + 1)
---+-------------------------------------------------------
0 | 1
1 | 1.8242186970142293482811907601740004481582060664172...
2 | 4.6411499876354997135766745161861025619606931664053...
3 | 12.458033110486227334005490900044868760156182746758...
4 | 33.772827636718664725840622695536754388698539389035...
5 | 91.745113003487592378804753255758770103015001327903...
6 | 249.34817457235336415492091487792502753925733493304...
7 | 677.76858274342862965002639720303758277745743924364...
8 | 1842.3429933125542741837067795825174364552910048629...
9 | 5007.9892086067535847763792612960555750439505128201...
10 | 13613.111168260512427104600576371603333751797005903...
11 | 37004.260308189872733759090203849389739567140765181...
12 | 100587.99784632291116677566445122445081000355383781...
13 | 273426.51764650200721445954967770694747115532054823...
14 | 743250.32644008297802053398664331007984602544468769...
15 | 2020363.8494013344669144695353969448664316126612264...
16 | 5491918.3325183103355711358264332049304062770315708...
17 | 14928581.801123374012617260715780658136872007285332...
18 | 40580092.629657118039112467300633253591763899054431...
19 | 110308128.38784153558518623157638223371637437763422...
20 | 299848580.92385254560063174684553555104528664675905...
...
A related sequence of reals is illustrated as follows.
n | b(n) = Sum_{k>=0} n^(k*Phi^2) / gamma(k*Phi^2 + 1)
---+-------------------------------------------------------
0 | 1,
1 | 1.2691417325369672809494103877123683653869189945372...
2 | 2.8349264477075750702951828589498469958147669043997...
3 | 7.6215048740220802425661954678079405560302002328126...
4 | 20.810397450404851456972409967004647596399203114777...
5 | 56.665103160045222668730139461429760451637612915609...
6 | 154.08709140369276431167898906830429367193349362321...
7 | 418.87429543418361482002934947840910901846510740386...
8 | 1138.6242482530971673557246344204771570040748636998...
9 | 3095.1023393187185229274783722049122276431310815904...
10 | 8413.3607170679453255258268268600975366662603763685...
11 | 22869.886402120801865609787207907788563054674234515...
12 | 62166.797837233242465719906369407713455052154704129...
13 | 168986.87811732291342764025923884927468323316136175...
14 | 459353.96108792478359267146723300337256336487359646...
15 | 1248653.5261082684248139179322937590691116457584312...
16 | 3394192.1907460189802851077375600340756265270991557...
17 | 9226370.9549636770014282607395061821517481507477216...
18 | 25079876.509972016087541582886154522979484703033513...
19 | 68174172.577458556101197864531288440510284242910732...
20 | 185316614.48788799735040675456090504454285328687386...
...
where b(n) ~ exp(n)/Phi^2 so that a(n) + b(n) ~ exp(n).
PROG
(PARI) /* Requires adequate precision */
{a(n) = my(Phi=(sqrt(5) + 1)/2); if(n==0, 1, floor( suminf(k=0, n^(k*Phi) / gamma(k*Phi + 1) ) ) )}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A293064 A219092 A135254 * A000754 A317974 A119683
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 16 2019
STATUS
approved