login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317974
a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,1.
4
0, 0, 1, 1, 4, 12, 33, 97, 280, 808, 2337, 6753, 19516, 56404, 163009, 471105, 1361520, 3934864, 11371969, 32865601, 94983348, 274506972, 793339873, 2292794785, 6626299912, 19150362168, 55345573857, 159951677089, 462268926316, 1335981992356, 3861059617665
OFFSET
0,5
LINKS
H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
Eric Weisstein's World of Mathematics, Coxeter's Loxodromic Sequence of Tangent Circles
FORMULA
Lim {n -> infinity} log(a(n))/n = 1.0612750619050... = log(phi+sqrt(phi)) = log(A001622+A139339), where phi is the golden ratio. - A.H.M. Smeets, Sep 04 2018
G.f.: x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 04 2018
MATHEMATICA
nxt[{a_, b_, c_, d_}]:={b, c, d, 2(b+c+d)-a}; NestList[nxt, {0, 0, 1, 1}, 30][[;; , 1]] (* or *) LinearRecurrence[{2, 2, 2, -1}, {0, 0, 1, 1}, 40] (* Harvey P. Dale, Dec 10 2024 *)
PROG
(Python)
a1, a2, a3, a4, n = 1, 1, 0, 0, 3
print(0, 0)
print(1, 0)
print(2, 1)
print(3, 1)
while n < 2172:
a1, a2, a3, a4, n = 2*(a1+a2+a3)-a4, a1, a2, a3, n+1
print(n, a1) # A.H.M. Smeets, Sep 04 2018
(PARI) concat(vector(2), Vec(x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 04 2018
CROSSREFS
Sequence in context: A135254 A326804 A000754 * A119683 A331834 A135373
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Sep 03 2018
STATUS
approved