OFFSET
0,5
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 0..2172
H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
Eric Weisstein's World of Mathematics, Coxeter's Loxodromic Sequence of Tangent Circles
Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
FORMULA
Lim {n -> infinity} log(a(n))/n = 1.0612750619050... = log(phi+sqrt(phi)) = log(A001622+A139339), where phi is the golden ratio. - A.H.M. Smeets, Sep 04 2018
G.f.: x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 04 2018
MATHEMATICA
nxt[{a_, b_, c_, d_}]:={b, c, d, 2(b+c+d)-a}; NestList[nxt, {0, 0, 1, 1}, 30][[;; , 1]] (* or *) LinearRecurrence[{2, 2, 2, -1}, {0, 0, 1, 1}, 40] (* Harvey P. Dale, Dec 10 2024 *)
PROG
(Python)
a1, a2, a3, a4, n = 1, 1, 0, 0, 3
print(0, 0)
print(1, 0)
print(2, 1)
print(3, 1)
while n < 2172:
a1, a2, a3, a4, n = 2*(a1+a2+a3)-a4, a1, a2, a3, n+1
print(n, a1) # A.H.M. Smeets, Sep 04 2018
(PARI) concat(vector(2), Vec(x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 04 2018
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Sep 03 2018
STATUS
approved