login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326801
Consider the e.g.f. C(x,y) = sqrt(1/2) * Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^(2*n-k) * y^k / ((2*n-k)!*k!) and related functions S(x,y) and D(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=2*n) of C(x,y).
6
1, -1, -1, 0, 1, 0, 0, 1, 0, -1, 0, 8, 8, 0, -1, 0, 1, 0, -24, 0, 0, -24, 0, 1, 0, -1, 0, 48, 0, -576, -576, 0, 48, 0, -1, 0, 1, 0, -80, 0, 3200, 0, 0, 3200, 0, -80, 0, 1, 0, -1, 0, 120, 0, -10240, 0, 160768, 160768, 0, -10240, 0, 120, 0, -1, 0, 1, 0, -168, 0, 24960, 0, -1433600, 0, 0, -1433600, 0, 24960, 0, -168, 0, 1, 0, -1, 0, 224, 0, -51520, 0, 6723584, 0, -123535360, -123535360, 0, 6723584, 0, -51520, 0, 224, 0, -1, 0, 1, 0, -288, 0, 94976, 0, -22586368, 0, 1615675392, 0, 0, 1615675392, 0, -22586368, 0, 94976, 0, -288, 0, 1, 0
OFFSET
0,12
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..3720 (first 60 rows of this triangle).
FORMULA
The e.g.f. Cx = C(x,y) and related functions Sx = S(x,y), Dx = D(x,y), Sy = S(y,x), Cy = C(y,x), and Dy = D(y,x) satisfy the following relations.
DEFINITION.
(1a) Sx = Integral Cx*Dy + Cy*Dx dx,
(1b) Cx = sqrt(1/2) - Integral Sx*Dy + Sy*Dx dx,
(1c) Dx = sqrt(1/2) - Integral Sx*Cy - Sy*Cx dx,
(2a) Sy = Integral Cy*Dx + Cx*Dy dy,
(2b) Cy = sqrt(1/2) - Integral Sy*Dx + Sx*Dy dy,
(2c) Dy = sqrt(1/2) - Integral Sy*Cx - Sx*Cy dy.
IDENTITIES.
(3a) Dx^2 + Cx^2 + Sx^2 = 1.
(3b) Dy^2 + Cy^2 + Sy^2 = 1.
(4a) Dx*(d/dx Dx) + Cx*(d/dx Cx) + Sx*(d/dx Sx) = 0.
(4b) Dy*(d/dy Dy) + Cy*(d/dy Cy) + Sy*(d/dy Sy) = 0.
(4c) Dy*(d/dx Dx) - Cy*(d/dx Cx) - Sy*(d/dx Sx) = 0.
(4d) Dx*(d/dy Dy) - Cx*(d/dy Cy) - Sx*(d/dy Sy) = 0.
(5a) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2 = 1.
(5b) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2 = 1.
RELATED FUNCTIONS.
(6a) SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
(6b) d/dx SS(x*y) = Dx*(d/dx Dy) - Cx*(d/dx Cy) - Sx*(d/dx Sy).
(6c) d/dy SS(x*y) = Dy*(d/dy Dx) - Cy*(d/dy Cx) - Sy*(d/dy Sx).
(7a) CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2.
(7b) CC(x*y)^2 = (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2.
(7c) CC(x*y)^2 = (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
DERIVATIVES.
(9a) d/dx Sx = Cx*Dy + Cy*Dx.
(9b) d/dx Cx = -Sx*Dy - Sy*Dx.
(9c) d/dx Dx = -Sx*Cy + Sy*Cx.
(9d) d/dy Sy = Sy*Dx + Sx*Dy.
(9e) d/dy Cy = -Sy*Dx - Sx*Dy.
(9f) d/dy Dy = -Sy*Cx + Sx*Cy.
EXAMPLE
E.g.f.: C(x,y) = sqrt(1/2) * (1 + (-x^2/2! - x*y ) + ( x^4/4! + x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) + 8*x^3*y^3/(3!*3!) - x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) - 24*x^3*y^5/(3!*5!) + x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) - 576*x^5*y^5/(5!*5!) + 48*x^3*y^7/(3!*7!) - x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) + 3200*x^5*y^7/(5!*7!) - 80*x^3*y^9/(3!*9!) + x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) + 160768*x^7*y^7/(7!*7!) - 10240*x^5*y^9/(5!*9!) + 120*x^3*y^11/(3!*11!) - x*y^13/13! ) + ( x^16/16! - 168*x^14*y^2/(14!*2!) + 24960*x^12*y^4/(12!*4!) - 1433600*x^10*y^6/(10!*6!) - 1433600*x^7*y^9/(7!*9!) + 24960*x^5*y^11/(5!*11!) - 168*x^3*y^13/(3!*13!) + x*y^15/15! ) + (-x^18/18! + 224*x^16*y^2/(16!*2!) - 51520*x^14*y^4/(14!*4!) + 6723584*x^12*y^6/(12!*6!) - 123535360*x^10*y^8/(10!*8!) - 123535360*x^9*y^9/(9!*9!) + 6723584*x^7*y^11/(7!*11!) - 51520*x^5*y^13/(5!*13!) + 224*x^3*y^15/(3!*15!) - x*y^17/17! ) + ( x^20/20! - 288*x^18*y^2/(18!*2!) + 94976*x^16*y^4/(16!*4!) - 22586368*x^14*y^6/(14!*6!) + 1615675392*x^12*y^8/(12!*8!) + 1615675392*x^9*y^11/(9!*11!) - 22586368*x^7*y^13/(7!*13!) + 94976*x^5*y^15/(5!*15!) - 288*x^3*y^17/(3!*17!) + x*y^19/19! ) + ...).
This triangle of coefficients T(n,k) of x^(2*n-k)*y^k/((2*n-k)!*k!) in sqrt(2)*C(x,y) begins
1;
-1, -1, 0;
1, 0, 0, 1, 0;
-1, 0, 8, 8, 0, -1, 0;
1, 0, -24, 0, 0, -24, 0, 1, 0;
-1, 0, 48, 0, -576, -576, 0, 48, 0, -1, 0;
1, 0, -80, 0, 3200, 0, 0, 3200, 0, -80, 0, 1, 0;
-1, 0, 120, 0, -10240, 0, 160768, 160768, 0, -10240, 0, 120, 0, -1, 0;
1, 0, -168, 0, 24960, 0, -1433600, 0, 0, -1433600, 0, 24960, 0, -168, 0, 1, 0;
-1, 0, 224, 0, -51520, 0, 6723584, 0, -123535360, -123535360, 0, 6723584, 0, -51520, 0, 224, 0, -1, 0;
1, 0, -288, 0, 94976, 0, -22586368, 0, 1615675392, 0, 0, 1615675392, 0, -22586368, 0, 94976, 0, -288, 0, 1, 0;
-1, 0, 360, 0, -161280, 0, 61458432, 0, -10447847424, 0, 212713734144, 212713734144, 0, -10447847424, 0, 61458432, 0, -161280, 0, 360, 0, -1, 0;
1, 0, -440, 0, 257280, 0, -144420864, 0, 46282211328, 0, -3835832827904, 0, 0, -3835832827904, 0, 46282211328, 0, -144420864, 0, 257280, 0, -440, 0, 1, 0; ...
CENTRAL TERMS.
The central terms are found in 1 - SS(x*y) = 1 - Dx*Dy + Cx*Cy + Sx*Sy:
[1, -1, 0, 8, 0, -576, 0, 160768, 0, -123535360, 0, 212713734144, 0, -716196297048064, 0, 4280584942657732608, ...] (cf. A326552).
RELATED SERIES.
The e.g.f. of A326800 begins
S(x,y) = x + (-x^3/3! - x*y^2/2! ) + ( x^5/5! - 3*x^3*y^2/(3!*2!) + x*y^4/4! ) + (-x^7/7! + 15*x^5*y^2/(5!*2!) + 15*x^3*y^4/(3!*4!) - x*y^6/6! ) + ( x^9/9! - 35*x^7*y^2/(7!*2!) + 145*x^5*y^4/(5!*4!) - 35*x^3*y^6/(3!*6!) + x*y^8/8! ) + (-x^11/11! + 63*x^9*y^2/(9!*2!) - 1505*x^7*y^4/(7!*4!) - 1505*x^5*y^6/(5!*6!) + 63*x^3*y^8/(3!*8!) - x*y^10/10! ) + ( x^13/13! - 99*x^11*y^2/(11!*2!) + 5985*x^9*y^4/(9!*4!) - 30387*x^7*y^6/(7!*6!) + 5985*x^5*y^8/(5!*8!) - 99*x^3*y^10/(3!*10!) + x*y^12/12! ) + (-x^15/15! + 143*x^13*y^2/(13!*2!) - 16401*x^11*y^4/(11!*4!) + 539679*x^9*y^6/(9!*6!) + 539679*x^7*y^8/(7!*8!) - 16401*x^5*y^10/(5!*10!) + 143*x^3*y^12/(3!*12!) - x*y^14/14! ) + ...
The e.g.f. of A326802 begins
D(x,y) = sqrt(1/2) * (1 + (-x^2/2! + x*y ) + ( x^4/4! - x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) - 8*x^3*y^3/(3!*3!) + x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) + 24*x^3*y^5/(3!*5!) - x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) + 576*x^5*y^5/(5!*5!) - 48*x^3*y^7/(3!*7!) + x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) - 3200*x^5*y^7/(5!*7!) + 80*x^3*y^9/(3!*9!) - x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) - 160768*x^7*y^7/(7!*7!) + 10240*x^5*y^9/(5!*9!) - 120*x^3*y^11/(3!*11!) + x*y^13/13! ) + ...).
The e.g.f. of A326552 begins
SS(x*y) = (x*y) - 8*(x*y)^3/3!^2 + 576*(x*y)^5/5!^2 - 160768*(x*y)^7/7!^2 + 123535360*(x*y)^9/9!^2 - 212713734144*(x*y)^11/11!^2 + 716196297048064*(x*y)^13/13!^2 - 4280584942657732608*(x*y)^15/15!^2 + 42250703121584165486592*(x*y)^17/17!^2 - 651154631135458759089848320*(x*y)^19/19!^2 + 14983590319172065236171175755776*(x*y)^21/21!^2 + ... + A326552(n)*(x*y)^(2*n-1)/(2*n-1)! + ...
such that
SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
The e.g.f. of A326551 begins
CC(x*y) = 1 - 2*(x*y)^2/2!^2 + 56*(x*y)^4/4!^2 - 8336*(x*y)^6/6!^2 + 3985792*(x*y)^8/8!^2 - 4679517952*(x*y)^10/10!^2 + 11427218287616*(x*y)^12/12!^2 - 51793067942397952*(x*y)^14/14!^2 + 400951893341645930496*(x*y)^16/16!^2 - 4975999084909976839454720*(x*y)^18/18!^2 + 94178912073481319162642169856*(x*y)^20/20!^2 -+ ... + A326551(n)*(x*y)^(2*n)/(2*n)! + ...
such that
CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2,
and CC(x*Y)^2 + SS(x*y)^2 = 1.
PROG
(PARI)
{TCx(n, k) = my(Cx=1, Sx=x, Dx=1, Cy=1, Sy=y, Dy=1);
for(i=0, 2*n+1,
Sx = intformal( Cx*Dy + Cy*Dx, x) + O(x^(2*n+2));
Cx = sqrt(1/2) - intformal( Sx*Dy + Sy*Dx, x);
Dx = sqrt(1/2) - intformal( Sx*Cy - Sy*Cx, x);
Sy = intformal( Cy*Dx + Cx*Dy, y) + O(y^(2*n+2));
Cy = sqrt(1/2) - intformal( Sy*Dx + Sx*Dy, y);
Dy = sqrt(1/2) - intformal( Sy*Cx - Sx*Cy, y);
);
round( (2*n-k)!*k! * polcoeff( polcoeff(sqrt(2)*Cx, 2*n-k, x), k, y) )}
for(n=0, 10, for(k=0, 2*n, print1( TCx(n, k), ", ")); print(""))
CROSSREFS
Cf. A326800 (Sx), A326802 (Dx), A326551 (CC), A326552 (SS).
Sequence in context: A127583 A273818 A375369 * A326802 A179639 A113809
KEYWORD
sign,tabf
AUTHOR
Paul D. Hanna, Jul 27 2019
STATUS
approved