login
A326552
E.g.f. S(x), where C(x*y) + iS(x*y) = exp( i*Integral Integral C(x*y) dx dy ) such that C(x)^2 + S(x)^2 = 1.
8
1, -8, 576, -160768, 123535360, -212713734144, 716196297048064, -4280584942657732608, 42250703121584165486592, -651154631135458759089848320, 14983590319172065236171175755776, -496301942561421311900528265903734784, 22953613919171561374366988621726483480576, -1444609513446024762131466039751756562435145728, 121022534222796916421149671221445519229890299166720
OFFSET
1,2
COMMENTS
The hyperbolic analog of the e.g.f. is described by A325292.
The e.g.f. can be derived from the functions described by A326797, A326798, and A326799.
The e.g.f. can be derived from the functions described by A326800, A326801, and A326802.
FORMULA
E.g.f. S(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)!^2, where series S(x) and related series C(x) satisfy the following relations.
(1.a) C(x)^2 + S(x)^2 = 1.
(1.b) S'(x)/C(x) = -C'(x)/S(x) = 1/x * Integral C(x) dx.
(2.a) S(x) = Integral C(x)/x * (Integral C(x) dx) dx.
(2.b) C(x) = 1 - Integral S(x)/x * (Integral C(x) dx) dx.
(3.a) C(x) + i*S(x) = exp( i*Integral 1/x * (Integral C(x) dx) dx ).
(3.b) C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ).
(3.c) S(x) = sin( Integral 1/x * (Integral C(x) dx) dx ).
Integration.
(4.a) S(x*y) = Integral C(x*y) * (Integral C(x*y) dy) dx.
(4.b) C(x*y) = 1 - Integral S(x*y) * (Integral C(x*y) dy) dx.
(4.c) S(x*y) = Integral C(x*y) * (Integral C(x*y) dx) dy.
(4.d) C(x*y) = 1 - Integral S(x*y) * (Integral C(x*y) dx) dy.
Exponential.
(5.a) C(x*y) + i*S(x*y) = exp( i*Integral Integral C(x*y) dx dy ).
(5.b) C(x*y) = cos( Integral Integral C(x*y) dx dy ).
(5.c) S(x*y) = sin( Integral Integral C(x*y) dx dy ).
Derivatives.
(6.a) d/dx S(x*y) = C(x*y) * Integral C(x*y) dy.
(6.b) d/dx C(x*y) = -S(x*y) * Integral C(x*y) dy.
(6.c) d/dy S(x*y) = C(x*y) * Integral C(x*y) dx.
(6.d) d/dy C(x*y) = -S(x*y) * Integral C(x*y) dx.
EXAMPLE
E.g.f. S(x) = x - 8*x^3/3!^2 + 576*x^5/5!^2 - 160768*x^7/7!^2 + 123535360*x^9/9!^2 - 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 - 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 - 651154631135458759089848320*x^19/19!^2 + 14983590319172065236171175755776*x^21/21!^2 -+ ...
where S(x) = sin( Integral 1/x * (Integral C(x) dx) dx ),
also, S(x*y) = sin( Integral Integral C(x*y) dx dy ),
such that C(x)^2 + S(x)^2 = 1.
RELATED SERIES.
C(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 - 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 -+ ...
where C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ),
also, C(x*y) = cos( Integral Integral C(x*y) dx dy ).
RELATED FUNCTIONS.
Given functions Ax, Bx, Cx, Ay, By, and Cy defined by
(1a) Ax = 0 + Integral Bx*Cy - Cx*By dx,
(1b) Bx = 1 + Integral Cx*Ay - Ax*Cy dx,
(1c) Cx = 0 + Integral Ax*By - Bx*Ay dx,
(2a) Ay = 0 + Integral By*Cx - Cy*Bx dy,
(2b) By = 0 + Integral Cy*Ax - Ay*Cx dy,
(2c) Cy = 1 + Integral Ay*Bx - By*Ax dy,
then
S(x*y) = Ax*Ay + Bx*By + Cx*Cy.
These related series begin as follows.
Ax = x + (-1*x^3 - 3*x*y^2)/3! + (1*x^5 - 30*x^3*y^2 + 5*x*y^4)/5! + (-1*x^7 + 315*x^5*y^2 + 525*x^3*y^4 - 7*x*y^6)/7! + (1*x^9 - 1260*x^7*y^2 + 18270*x^5*y^4 - 2940*x^3*y^6 + 9*x*y^8)/9! + (-1*x^11 + 3465*x^9*y^2 - 496650*x^7*y^4 - 695310*x^5*y^6 + 10395*x^3*y^8 - 11*x*y^10)/11! + ... (A326797)
Bx = 1 + (-1*x^2)/2! + (1*x^4)/4! + (-1*x^6 + 120*x^4*y^2)/6! + (1*x^8 - 672*x^6*y^2)/8! + (-1*x^10 + 2160*x^8*y^2 - 120960*x^6*y^4)/10! + (1*x^12 - 5280*x^10*y^2 + 1584000*x^8*y^4)/12! + ... (A326798)
Cx = (2*x*y)/2! + (-4*x*y^3)/4! + (-160*x^3*y^3 + 6*x*y^5)/6! + (1344*x^3*y^5 - 8*x*y^7)/8! + (145152*x^5*y^5 - 5760*x^3*y^7 + 10*x*y^9)/10! + (-2534400*x^5*y^7 + 17600*x^3*y^9 - 12*x*y^11)/12! + ... (A326799)
Ay = -y + (3*x^2*y + 1*y^3)/3! + (-5*x^4*y + 30*x^2*y^3 + -1*y^5)/5! + (7*x^6*y + -525*x^4*y^3 + -315*x^2*y^5 + 1*y^7)/7! + (-9*x^8*y + 2940*x^6*y^3 + -18270*x^4*y^5 + 1260*x^2*y^7 + -1*y^9)/9! + (11*x^10*y + -10395*x^8*y^3 + 695310*x^6*y^5 + 496650*x^4*y^7 + -3465*x^2*y^9 + 1*y^11)/11! + ...
By = (2*x*y)/2! + (-4*x^3*y)/4! + (6*x^5*y + -160*x^3*y^3)/6! + (-8*x^7*y + 1344*x^5*y^3)/8! + (10*x^9*y + -5760*x^7*y^3 + 145152*x^5*y^5)/10! + (-12*x^11*y + 17600*x^9*y^3 + -2534400*x^7*y^5)/12! + ...
Cy = 1 + (-1*y^2)/2! + (1*y^4)/4! + (120*x^2*y^4 + -1*y^6)/6! + (-672*x^2*y^6 + 1*y^8)/8! + (-120960*x^4*y^6 + 2160*x^2*y^8 + -1*y^10)/10! + (1584000*x^4*y^8 + -5280*x^2*y^10 + 1*y^12)/12! + ...
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, 2*n+1,
S = intformal( C/x * intformal( C +x*O(x^(2*n+1)) ) );
C = 1 - intformal( S/x * intformal( C +x*O(x^(2*n+1)) ) ); ); (2*n+1)!^2*polcoeff(S, 2*n+1)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 25 2019
STATUS
approved