login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326554
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} (exp(n*x) + A(x))^n * x^n/n!.
1
1, 2, 10, 89, 1144, 19237, 402292, 10076467, 294435680, 9842422985, 370678591684, 15537544991575, 717711797249344, 36234873537957421, 1985661659081360852, 117415812545786700803, 7454037992785099114816, 505819653769275584567185, 36549387566762559927313924, 2802817106895324406986830863, 227441704405405503356461103456
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = A(x), r = x.
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( exp(n*x) + A(x) )^n * x^n / n!,
(2) A(x) = Sum_{n>=0} exp(n^2*x) * exp( exp(n*x)*x * A(x) ) * x^n / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 10*x^2/2! + 89*x^3/3! + 1144*x^4/4! + 19237*x^5/5! + 402292*x^6/6! + 10076467*x^7/7! + 294435680*x^8/8! + 9842422985*x^9/9! + 370678591684*x^10/10! + ...
such that the following sums are equal
A(x) = 1 + (exp(x) + A(x)) + (exp(2*x) + A(x))^2*x^2/2! + (exp(3*x) + A(x))^3*x^3/3! + (exp(4*x) + A(x))^4*x^4/4! + (exp(5*x) + A(x))^5*x^5/5! + ...
and
A(x) = exp(x*A(x)) + exp(x)*exp(exp(x)*x*A(x))*x + exp(4*x)*exp(exp(2*x)*x*A(x))*x^2/2! + exp(9*x)*exp(exp(3*x)*x*A(x))*x^3/3! + exp(16*x)*exp(exp(4*x)*x*A(x))*x^4/4! + ...
PROG
(PARI) /* E.g.f. A(x) = Sum_{n>=0} (exp(n*x) + A(x) )^n * x^n/n! */
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, (exp(m*x +x*O(x^n)) + A)^m*x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* E.g.f. A(x) = Sum_{n>=0} exp(n^2*x) * exp( exp(n*x)*x*A(x) )*x^n/n! */
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, #A, exp(m^2*x + exp(m*x +x*O(x^n))*x * A)*x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A096658 A346371 A186184 * A055779 A363425 A338050
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 13 2019
STATUS
approved