The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326557 G.f. A(x) satisifes: Sum_{n>=0} A(x)^((n+1)^2) * x^n = Sum_{n>=0} ((1+x)^(n+1) + 1)^n * x^n. 2
1, 1, 1, 1, 3, 12, 64, 391, 2617, 18738, 141483, 1116801, 9160502, 77745060, 680550918, 6129635386, 56699324213, 537823602765, 5225075478099, 51939709551433, 527829047648887, 5479728265490353, 58079392804968241, 628114208288086710, 6927692801388774583, 77887967322146451681, 892270205641708989800, 10410949755661589229619 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
G.f. A(x) satisifes:
(1) Sum_{n>=0} A(x)^((n+1)^2) * x^n = Sum_{n>=0} ((1+x)^(n+1) + 1)^n * x^n.
(2) Sum_{n>=0} A(x)^((n+1)^2) * x^n = Sum_{n>=0} (1+x)^(n*(n+1)) * x^n / (1 - x*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 3*x^4 + 12*x^5 + 64*x^6 + 391*x^7 + 2617*x^8 + 18738*x^9 + 141483*x^10 + 1116801*x^11 + 9160502*x^12 + ...
such that the following series are all equal
B(x) = A(x) + A(x)^4*x + A(x)^9*x^2 + A(x)^16*x^3 + A(x)^25*x^4 + A(x)^36*x^5 + A(x)^49*x^6 + A(x)^64*x^7 + ... + A(x)^((n+1)^2) * x^n + ...
and
B(x) = 1 + (1 + (1+x)^2)*x + (1 + (1+x)^3)^2*x^2 + (1 + (1+x)^4)^3*x^3 + (1 + (1+x)^5)^4*x^4 + ... + (1 + (1+x)^(n+1))^n*x^n + ...
also
B(x) = 1/(1 - x) + (1+x)^2*x/(1 - x*(1+x))^2 + (1+x)^6*x^2/(1 - x*(1+x)^2)^3 + (1+x)^12*x^3/(1 - x*(1+x)^3)^4 + ... + (1+x)^(n*(n+1))*x^n/(1 - x*(1+x)^n)^(n+1) + ...
where
B(x) = 1 + 2*x + 6*x^2 + 21*x^3 + 85*x^4 + 382*x^5 + 1879*x^6 + 9986*x^7 + 56818*x^8 + 343640*x^9 + 2196596*x^10 + ... + A326276(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(n=0, #A, ((1+x)^(n+1) + 1 +x*O(x^#A))^n *x^n - Ser(A)^((n+1)^2) *x^n ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A326276.
Sequence in context: A206226 A371495 A326809 * A308204 A307724 A029851
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 14 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 03:10 EDT 2024. Contains 373492 sequences. (Running on oeis4.)