login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326809
G.f. A(x) = Sum_{n>=0} x^n * (A(x)^(n+1) + 1)^n / (1 + x*A(x)^n)^(n+1).
0
1, 1, 3, 12, 64, 388, 2547, 17675, 127930, 957361, 7363756, 57974777, 465801960, 3811089824, 31703423654, 267851394004, 2296630925851, 19975895528930, 176220976812512, 1576741746108772, 14312547251073466, 131857909192636473, 1233606830533043503, 11728329063674693906, 113406667874700311312, 1116271813812969589106, 11195131545541254173944
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * (A(x)^(n+1) - 1)^n / (1 - x*A(x)^n)^(n+1).
(2) A(x) = Sum_{n>=0} x^n * (A(x)^(n+1) + 1)^n / (1 + x*A(x)^n)^(n+1).
(3) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (A(x)^(n+1) - A(x)^k)^(n-k).
(4) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (A(x)^(n+1) + A(x)^k)^(n-k) * (-1)^k.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 64*x^4 + 388*x^5 + 2547*x^6 + 17675*x^7 + 127930*x^8 + 957361*x^9 + 7363756*x^10 + 57974777*x^11 + 465801960*x^12 + ...
satisfies
A(x) = 1/(1 - x*A(x)) + x*(A(x)^2 - 1)/(1 - x*A(x))^2 + x^2*(A(x)^3 - 1)^2/(1 - x*A(x)^2)^3 + x^3*(A(x)^4 - 1)^3/(1 - x*A(x)^3)^4 + x^4*(A(x)^5 - 1)^4/(1 - x*A(x)^4)^5 + x^5*(A(x)^6 - 1)^5/(1 - x*A(x)^5)^6 + ...
also
A(x) = 1/(1 + x*A(x)) + x*(A(x)^2 + 1)/(1 + x*A(x))^2 + x^2*(A(x)^3 + 1)^2/(1 + x*A(x)^2)^3 + x^3*(A(x)^4 + 1)^3/(1 + x*A(x)^3)^4 + x^4*(A(x)^5 + 1)^4/(1 + x*A(x)^4)^5 + x^5*(A(x)^6 + 1)^5/(1 + x*A(x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^(n+1) + 1)^n/(1 + x*Ser(A)^n)^(n+1) ), #A-1));
polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^(n+1) - 1)^n/(1 - x*Ser(A)^n)^(n+1) ), #A-1));
polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A324618.
Sequence in context: A233397 A206226 A371495 * A326557 A308204 A307724
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 19 2019
STATUS
approved