login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206226 Number of partitions of n^2 into parts not greater than n. 11
1, 1, 3, 12, 64, 377, 2432, 16475, 116263, 845105, 6292069, 47759392, 368379006, 2879998966, 22777018771, 181938716422, 1465972415692, 11902724768574, 97299665768397, 800212617435074, 6617003142869419, 54985826573015541, 458962108485797208, 3846526994743330075 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also the number of partitions of n^2 using n or fewer numbers. Thus for n=3 one has: 9; 1,8; 2,7; 3,6; 4,5; 1,1,7; 1,2,6; 1,3,5; 1,4,4; 2,2,5; 2,3,4; 3,3,3. - J. M. Bergot, Mar 26 2014 [computations done by Charles R Greathouse IV]

The partitions in the comments above are the conjugates of the partitions in the definition. By conjugation we have: "partitions into parts <= m" are equinumerous with "partitions into at most m parts". - Joerg Arndt, Mar 31 2014

From Vaclav Kotesovec, May 25 2015: (Start)

In general, "number of partitions of j*n^2 into parts that are at most n" is (for j>0) asymptotic to c(j) * d(j)^n / n^2, where c(j) and d(j) are a constants.

-------

j  c(j)

1  0.1582087202672504149766310999238...

2  0.0794245035465730707705885572860...

3  0.0530017980244665552354063060738...

4  0.0397666338404544208556554596295...

5  0.0318193213988281353709268311928...

...

17 0.0093617308583114626385718275875...

   c(j) for big j asymptotically approaches 1 / (2*Pi*j).

---------

j    d(j)

1    9.15337019245412246194853029240... = A258268

2   16.57962120993269533568313969522...

3   23.98280768122086592445663786762...

4   31.37931997386325137074644287711...

5   38.77298550971449870728474612568...

...

17 127.45526806942537991146993713837...

   d(j) for big j asymptotically approaches j * exp(2).

(End)

d(j) = r^(2*j+1)/(r-1), where r is the root of the equation polylog(2, 1-r) + (j+1/2)*log(r)^2 = 0. - Vaclav Kotesovec, Jun 11 2015

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..382 (first 150 terms from Alois P. Heinz)

FORMULA

a(n) = [x^(n^2)] Product_{k=1..n} 1/(1 - x^k).

a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.1582087202672504149766310999238742... . - Vaclav Kotesovec, Sep 07 2014

MAPLE

T:= proc(n, k) option remember;

      `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))

    end:

seq(T(n^2, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz

MATHEMATICA

Table[SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}], {x, 0, n^2}], {n, 0, 20}] (* Vaclav Kotesovec, May 25 2015 *)

(* A program to compute the constants d(j) *) Table[r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2, 1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->60], {j, 1, 5}] (* Vaclav Kotesovec, Jun 11 2015 *)

PROG

(PARI) {a(n)=polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(n^2)))), n^2)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A173519, A206227, A206240, A107379, A258268.

Column k=2 of A238016.

Cf. A258296 (j=2), A258293 (j=3), A258294 (j=4), A258295 (j=5).

Sequence in context: A052757 A345883 A233397 * A326809 A326557 A308204

Adjacent sequences:  A206223 A206224 A206225 * A206227 A206228 A206229

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 03:23 EDT 2021. Contains 346367 sequences. (Running on oeis4.)