login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206229
a(n) = [x^n] Product_{k=1..n} (1 + x^k)^(n-k+1).
7
1, 1, 2, 8, 31, 124, 515, 2166, 9182, 39195, 168216, 725043, 3136223, 13606891, 59187790, 258034685, 1127137141, 4932071321, 21614913239, 94859273448, 416820578198, 1833626307670, 8074598332650, 35591081565244, 157013886785417, 693237405812328
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007844067631287560916216334645404240888403... and c = 0.1630284922981520921416997097273846855003438911417350833863798... - Vaclav Kotesovec, Aug 21 2018
EXAMPLE
Let [x^n] F(x) denote the coefficient of x^n in F(x); then
a(0) = 1;
a(1) = [x] (1+x) = 1;
a(2) = [x^2] (1+x)^2*(1+x^2) = 2;
a(3) = [x^3] (1+x)^3*(1+x^2)^2*(1+x^3) = 8;
a(4) = [x^4] (1+x)^4*(1+x^2)^3*(1+x^3)^2*(1+x^4) = 31; ...
as illustrated below.
The coefficients in Product_{k=1..n} (1+x^k)^(n-k+1) for n=0..9 begin:
n=0: [(1), 0, 0, 0, 0, 0, 0, ...];
n=1: [1,(1), 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2,(2), 2, 1, 0, 0, 0, 0, 0, 0, 0 ...];
n=3: [1, 3, 5, (8), 10, 10, 10, 8, 5, 3, 1, 0 ...];
n=4: [1, 4, 9, 18, (31), 46, 64, 82, 96, 106, 110, 106 ...];
n=5: [1, 5, 14, 33, 68, (124), 210, 332, 492, 693, 931, ...];
n=6: [1, 6, 20, 54, 127, 266, (515), 934, 1597, 2602, ...];
n=7: [1, 7, 27, 82, 215, 502, 1078, (2166), 4109, 7428, ...];
n=8: [1, 8, 35, 118, 340, 870, 2038, 4454, (9182), 18020, ...];
n=9: [1, 9, 44, 163, 511, 1417, 3582, 8420, 18634,(39195), ...]; ...
where the coefficients in parenthesis start this sequence.
MATHEMATICA
Table[SeriesCoefficient[Product[(1 + x^k)^(n-k+1), {k, 1, n}], {x, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Aug 21 2018 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, (1+x^k+x*O(x^n))^(n-k+1)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A206228.
Sequence in context: A216318 A018916 A281831 * A027073 A150793 A150794
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2012
STATUS
approved