%I #10 Aug 21 2018 08:52:30
%S 1,1,2,8,31,124,515,2166,9182,39195,168216,725043,3136223,13606891,
%T 59187790,258034685,1127137141,4932071321,21614913239,94859273448,
%U 416820578198,1833626307670,8074598332650,35591081565244,157013886785417,693237405812328
%N a(n) = [x^n] Product_{k=1..n} (1 + x^k)^(n-k+1).
%H Vaclav Kotesovec, <a href="/A206229/b206229.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007844067631287560916216334645404240888403... and c = 0.1630284922981520921416997097273846855003438911417350833863798... - _Vaclav Kotesovec_, Aug 21 2018
%e Let [x^n] F(x) denote the coefficient of x^n in F(x); then
%e a(0) = 1;
%e a(1) = [x] (1+x) = 1;
%e a(2) = [x^2] (1+x)^2*(1+x^2) = 2;
%e a(3) = [x^3] (1+x)^3*(1+x^2)^2*(1+x^3) = 8;
%e a(4) = [x^4] (1+x)^4*(1+x^2)^3*(1+x^3)^2*(1+x^4) = 31; ...
%e as illustrated below.
%e The coefficients in Product_{k=1..n} (1+x^k)^(n-k+1) for n=0..9 begin:
%e n=0: [(1), 0, 0, 0, 0, 0, 0, ...];
%e n=1: [1,(1), 0, 0, 0, 0, 0, 0, 0, 0, ...];
%e n=2: [1, 2,(2), 2, 1, 0, 0, 0, 0, 0, 0, 0 ...];
%e n=3: [1, 3, 5, (8), 10, 10, 10, 8, 5, 3, 1, 0 ...];
%e n=4: [1, 4, 9, 18, (31), 46, 64, 82, 96, 106, 110, 106 ...];
%e n=5: [1, 5, 14, 33, 68, (124), 210, 332, 492, 693, 931, ...];
%e n=6: [1, 6, 20, 54, 127, 266, (515), 934, 1597, 2602, ...];
%e n=7: [1, 7, 27, 82, 215, 502, 1078, (2166), 4109, 7428, ...];
%e n=8: [1, 8, 35, 118, 340, 870, 2038, 4454, (9182), 18020, ...];
%e n=9: [1, 9, 44, 163, 511, 1417, 3582, 8420, 18634,(39195), ...]; ...
%e where the coefficients in parenthesis start this sequence.
%t Table[SeriesCoefficient[Product[(1 + x^k)^(n-k+1), {k, 1, n}], {x, 0, n}], {n, 0, 40}] (* _Vaclav Kotesovec_, Aug 21 2018 *)
%o (PARI) {a(n)=polcoeff(prod(k=1,n,(1+x^k+x*O(x^n))^(n-k+1)),n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A206228.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 05 2012