login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027073
a(n) = Sum_{k=0..n} T(n,k) * T(n,2n-k), with T given by A027052.
2
1, 1, 2, 8, 31, 129, 510, 1970, 7513, 28253, 105176, 388330, 1423691, 5188577, 18812848, 67907520, 244160177, 874821817, 3124747792, 11130097846, 39544807851, 140180597013, 495886522916, 1750852227736, 6171019594129
OFFSET
0,3
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n, k)*T(n, 2*n-k), k=0..n), n=0..30); # G. C. Greubel, Nov 06 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, 2*n - k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k)*T(n, 2*n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
CROSSREFS
Sequence in context: A018916 A281831 A206229 * A150793 A150794 A150795
KEYWORD
nonn
STATUS
approved