login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027076
a(n) = Sum_{k=0..2n} (k+1) * A027052(n, 2n-k).
2
1, 4, 13, 38, 111, 326, 961, 2842, 8425, 25020, 74403, 221488, 659895, 1967422, 5869055, 17516540, 52300729, 156214828, 466736979, 1394894672, 4169810935, 12467680862, 37285474803, 111524444760, 333633526937, 998233861836
OFFSET
0,2
COMMENTS
The terms a(0)..a(25) obey a linear recurrence with polynomial coefficients of degree 7. - Ralf Stephan, May 31 2014
LINKS
FORMULA
0 = a(n)*(9*n + 9) + a(n+1)*(3*n + 21) + a(n+2)*(13*n - 5) + a(n+3)*(-29*n + 11) + a(n+4)*(-13*n - 121) + a(n+5)*(25*n + 123) + a(n+6)*(-98n - 43) + a(n+7)*(n + 5) for n>=-1. - Michael Somos, May 31 2014
0 = a(n)*(+81*a(n+1) + 189*a(n+2) + ... + 45*a(n+8)) + a(n+1)*(-135*a(n+1) + ...) + ... + a(n+7)*(-7*a(n+7) + a(n+8)) for n>=-1. - Michael Somos, May 31 2014
EXAMPLE
G.f. = 1 + 4*x + 13*x^2 + 38*x^3 + 111*x^4 + 326*x^5 + 961*x^6 + 2842*x^7 + ...
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add((k+1)*T(n, 2*n-k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n, 2*n-k], {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum((k+1)*T(n, 2*n-k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
CROSSREFS
Cf. A027052.
Sequence in context: A247287 A159036 A058693 * A183112 A364647 A266429
KEYWORD
nonn
STATUS
approved