login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027076 a(n) = Sum_{k=0..2n} (k+1) * A027052(n, 2n-k). 2
1, 4, 13, 38, 111, 326, 961, 2842, 8425, 25020, 74403, 221488, 659895, 1967422, 5869055, 17516540, 52300729, 156214828, 466736979, 1394894672, 4169810935, 12467680862, 37285474803, 111524444760, 333633526937, 998233861836 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The terms a(0)..a(25) obey a linear recurrence with polynomial coefficients of degree 7. - Ralf Stephan, May 31 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

0 = a(n)*(9*n + 9) + a(n+1)*(3*n + 21) + a(n+2)*(13*n - 5) + a(n+3)*(-29*n + 11) + a(n+4)*(-13*n - 121) + a(n+5)*(25*n + 123) + a(n+6)*(-98n - 43) + a(n+7)*(n + 5) for n>=-1. - Michael Somos, May 31 2014

0 = a(n)*(+81*a(n+1) + 189*a(n+2) + ... + 45*a(n+8)) + a(n+1)*(-135*a(n+1) + ...) + ... + a(n+7)*(-7*a(n+7) + a(n+8)) for n>=-1. - Michael Somos, May 31 2014

EXAMPLE

G.f. = 1 + 4*x + 13*x^2 + 38*x^3 + 111*x^4 + 326*x^5 + 961*x^6 + 2842*x^7 + ...

MAPLE

T:= proc(n, k) option remember;

      if k<0 or k>2*n then 0

    elif k=0 or k=2 or k=2*n then 1

    elif k=1 then 0

    else add(T(n-1, k-j), j=1..3)

      fi

    end:

seq( add((k+1)*T(n, 2*n-k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019

MATHEMATICA

T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n, 2*n-k], {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)

PROG

(Sage)

@CachedFunction

def T(n, k):

    if (k<0 or k>2*n): return 0

    elif (k==0 or k==2 or k==2*n): return 1

    elif (k==1): return 0

    else: return sum(T(n-1, k-j) for j in (1..3))

[sum((k+1)*T(n, 2*n-k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019

CROSSREFS

Cf. A027052.

Sequence in context: A247287 A159036 A058693 * A183112 A266429 A105693

Adjacent sequences:  A027073 A027074 A027075 * A027077 A027078 A027079

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 20:56 EST 2020. Contains 338920 sequences. (Running on oeis4.)