login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027078
a(n) = Sum_{k=0..n} T(n,k) * T(n,n+k), with T given by A027052.
2
1, 0, 2, 8, 31, 130, 590, 2798, 13541, 66724, 332708, 1673536, 8479367, 43218034, 221383712, 1138976166, 5882112985, 30479772624, 158413903096, 825556260636, 4312814257059, 22580855859166, 118468635595680, 622698941708890
OFFSET
0,3
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n, k)*T(n, n+k), k=0..n), n=0..30); # G. C. Greubel, Nov 07 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, n+k], {k, 0, n}], {n, 30}] (* G. C. Greubel, Nov 07 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k)*T(n, n+k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 07 2019
CROSSREFS
Sequence in context: A150793 A150794 A150795 * A150796 A150797 A150798
KEYWORD
nonn
STATUS
approved